Journal of Computational Electronics

, Volume 15, Issue 4, pp 1158–1169 | Cite as

Quantum dynamics of optical phonons generated by optical excitation of a quantum dot

A Wigner function analysis
  • Daniel Wigger
  • Helge Gehring
  • V. Martin Axt
  • Doris E. Reiter
  • Tilmann Kuhn


The study of the fundamental properties of phonons is crucial to understand their role in applications in quantum information science, where the active use of phonons is currently highly debated. A genuine quantum phenomenon associated with the fluctuation properties of phonons is squeezing, which is achieved when the fluctuations of a certain variable drop below their respective vacuum values. We consider a semiconductor quantum dot (QD) in which the exciton is coupled to phonons. We review the fluctuation properties of the phonons, which are generated by optical manipulation of the QD, in the limiting case of ultra-short pulses. Then, we discuss the phonon properties for an excitation with finite pulses. Within a generating function formalism, we calculate the corresponding fluctuation properties of the phonons and show that phonon squeezing can be achieved by the optical manipulation of the QD exciton for certain conditions even for a single-pulse excitation where neither for short nor for long pulses squeezing occurs. To explain the occurrence of squeezing, we employ a Wigner function picture providing a detailed understanding of the induced quantum dynamics.


Phonon squeezing Quantum dot Optical excitation Wigner function Exciton–phonon interaction 


  1. 1.
    Volz, S., Ordonez-Miranda, J., Shchepetov, A., Prunnila, M., Ahopelto, J., Pezeril, T., Vaudel, G., Gusev, V., Ruello, P., Weig, E.M., Schubert, M., Hettich, M., Grossman, M., Dekorsy, T., Alzina, F., Graczykowski, E., Chavez-Angel, E., Reparaz, J.S., Wagner, M.R., Sotomayor-Torres, C.M., Xiong, S., Neogi, S., Donadio, D.: Nanophononics: state of the art and perspectives. Eur. Phys. J. B 89, 1–20 (2016)CrossRefGoogle Scholar
  2. 2.
    Brüggemann, C., Akimov, A.V., Scherbakov, A.V., Bombeck, M., Schneider, C., Höfling, S., Forchel, A., Yakovlev, D.R., Yakovlev, D.R., Bayer, M.: Laser mode feeding by shaking quantum dots in a planar microcavity. Nat. Photon. 6, 30–34 (2011)CrossRefGoogle Scholar
  3. 3.
    Czerniuk, T., Brüggemann, C., Tepper, J., Brodbeck, S., Schneider, C., Kamp, M., Höfling, B.A., Glavin, S., Yakovlev, D.R., Akimov, A.V., Bayer, M.: Lasing from active optomechanical resonators. Nat. Commun. 5, 4038 (2014)CrossRefGoogle Scholar
  4. 4.
    Stotz, J.A.H., Hey, R., Santos, P.V., Ploog, K.H.: Coherent spin transport through dynamic quantum dots. Nat. Mater. 4, 585–588 (2005)CrossRefGoogle Scholar
  5. 5.
    Völk, S., Schulein, F.J.R., Knall, F., Reuter, D., Wieck, A.D., Truong, T.A., Kim, H., Petroff, P.M., Wixforth, A., Krenner, H.J.: Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves. Nano Lett. 10, 3399–3407 (2010)CrossRefGoogle Scholar
  6. 6.
    Fuhrmann, D.A., Thon, S.M., Kim, H., Bouwmeester, D., Petroff, P.M., Wixforth, A., Krenner, H.J.: Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nat. Photon. 5, 605–609 (2011)CrossRefGoogle Scholar
  7. 7.
    Weiß, M., Kinzel, J.B., Schülein, F.J.R., Heigl, M., Rudolph, D., Morkötter, S., Döblinger, M., Bichler, M., Abstreiter, G., Finley, J.J., Koblmüller, G., Wixforth, A., Krenner, H.J.: Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires. Nano Lett. 14, 2256–2264 (2014)CrossRefGoogle Scholar
  8. 8.
    Gustafsson, M.V., Aref, T., Kockum, A.F., Ekström, M.K., Johansson, G., Delsing, P.: Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014)CrossRefGoogle Scholar
  9. 9.
    Kerfoot, M.L., Govorov, A.O., Scheibner, M.: Optophononics with coupled quantum dots. Nat. Commun. 5, 3299 (2014)CrossRefGoogle Scholar
  10. 10.
    Nakamura, K.G., Shikano, Y., Kayanuma, Y.: Influence of pulse width and detuning on coherent phonon generation. Phys. Rev. B 92, 144304 (2015)CrossRefGoogle Scholar
  11. 11.
    Kabuss, J., Carmele, A., Brandes, T., Knorr, A.: Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme. Phys. Rev. Lett. 109, 054301 (2012)CrossRefGoogle Scholar
  12. 12.
    Dodonov, V.V.: ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. J. Opt. B 4, R1 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Polzik, E.S.: Quantum physics: the squeeze goes on. Nature 453, 45–46 (2008)CrossRefGoogle Scholar
  14. 14.
    Drummond, P.D., Ficek, Z.: Quantum Squeezing, vol. 27. Springer-Verlag Berlin Heidelberg, New York (2013)Google Scholar
  15. 15.
    Goda, K., Miyakawa, O., Mikhailov, E.E., Saraf, S., Adhikari, R., McKenzie, K., Ward, R., Vass, S., Weinstein, A.J., Mavalvala, N.: A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4, 472–476 (2008)CrossRefGoogle Scholar
  16. 16.
    Janszky, J., Vinogradov, A.V.: Squeezing via one-dimensional distribution of coherent states. Phys. Rev. Lett. 64, 2771 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hu, X., Nori, F.: Squeezed phonon states: modulating quantum fluctuations of atomic displacements. Phys. Rev. Lett. 76, 2294 (1996)CrossRefGoogle Scholar
  18. 18.
    Sauer, S., Daniels, J.M., Reiter, D.E., Kuhn, T., Vagov, A., Axt, V.M.: Lattice fluctuations at a double phonon frequency with and without squeezing: an exactly solvable model of an optically excited quantum dot. Phys. Rev. Lett. 105, 157401 (2010)CrossRefGoogle Scholar
  19. 19.
    Papenkort, T., Axt, V.M., Kuhn, T.: Optical excitation of squeezed longitudinal optical phonon states in an electrically biased quantum well. Phys. Rev. B 85, 235317 (2012)CrossRefGoogle Scholar
  20. 20.
    Zijlstra, E.S., Kalitsov, A., Zier, T., Garcia, M.E.: Squeezed thermal phonons precurse nonthermal melting of silicon as a function of fluence. Phys. Rev. X 3, 011005 (2013)Google Scholar
  21. 21.
    Garrett, G.A., Rojo, A.G., Sood, A.K., Whitaker, J.F., Merlin, R.: Vacuum squeezing of solids: macroscopic quantum states driven by light pulses. Science 275, 1638–1640 (1997)CrossRefGoogle Scholar
  22. 22.
    Misochko, O.V.: Implication of phase-dependent noise of coherent phonons in \(\text{ YBa }_2\text{ Cu }_3\text{ O }_7- \delta \). Phys. Lett. A 269, 97–102 (2000)CrossRefGoogle Scholar
  23. 23.
    Johnson, S.L., Beaud, P., Vorobeva, E., Milne, C.J., Murray, É.D., Fahy, S., Ingold, G.: Directly observing squeezed phonon states with femtosecond X-ray diffraction. Phys. Rev. Lett. 102, 175503 (2009)CrossRefGoogle Scholar
  24. 24.
    Esposito, M., Titimbo, K., Zimmermann, K., Giusti, F., Randi, F., Boschetto, D., Parmigiani, F., Floreanini, R., Benatti, F., Fausti, D.: Photon number statistics uncover the fluctuations in non-equilibrium lattice dynamics. Nat. Commun. 6, 10249 (2015)CrossRefGoogle Scholar
  25. 25.
    Vagov, A., Axt, V.M., Kuhn, T.: Electron–phonon dynamics in optically excited quantum dots: exact solution for multiple ultrashort laser pulses. Phys. Rev. B 66, 165312 (2002)CrossRefGoogle Scholar
  26. 26.
    Axt, V.M., Kuhn, T., Vagov, A., Peeters, F.M.: Phonon-induced pure dephasing in exciton–biexciton quantum dot systems driven by ultrafast laser pulse sequences. Phys. Rev. B 72, 125309 (2005)CrossRefGoogle Scholar
  27. 27.
    Wigger, D., Reiter, D.E., Axt, V.M., Kuhn, T.: Fluctuation properties of acoustic phonons generated by ultrafast optical excitation of a quantum dot. Phys. Rev. B 87, 085301 (2013)CrossRefGoogle Scholar
  28. 28.
    Wigger, D., Lüker, S., Reiter, D.E., Axt, V.M., Machnikowski, P., Kuhn, T.: Energy transport and coherence properties of acoustic phonons generated by optical excitation of a quantum dot. J. Phys. Condens. Matter 26, 355802 (2014)CrossRefGoogle Scholar
  29. 29.
    Wigger, D., Lüker, S., Axt, V.M., Reiter, D.E., Kuhn, T.: Squeezed phonon wave packet generation by optical manipulation of a quantum dot. Photonics 2, 214–227 (2015)CrossRefGoogle Scholar
  30. 30.
    Stauber, T., Zimmermann, R., Castella, H.: Electron–phonon interaction in quantum dots: a solvable model. Phys. Rev. B 62, 7336 (2000)CrossRefGoogle Scholar
  31. 31.
    Reiter, D.E., Wigger, D., Axt, V.M., Kuhn, T.: Generation and dynamics of phononic cat states after optical excitation of a quantum dot. Phys. Rev. B 84, 195327 (2011)CrossRefGoogle Scholar
  32. 32.
    Axt, V.M., Herbst, M., Kuhn, T.: Coherent control of phonon quantum beats. Superlattices Microstruct. 26, 117–128 (1999)CrossRefGoogle Scholar
  33. 33.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Berlin (2011)Google Scholar
  34. 34.
    Janszky, J., Adam, P., Vinogradov, A.V., Kobayashi, T.: Influence of phonon squeezing on the transient spectrum. Spectrochim. Acta 48, 31–39 (1992)Google Scholar
  35. 35.
    Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)Google Scholar
  36. 36.
    Haroche, S., Raimond, J.M.: Exploring the Quantum. Oxford Univ. Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  37. 37.
    Schulte, C.H.H., Hansom, J., Jones, A.E., Matthiesen, C., Le Gall, C., Atatüre, M.: Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institut für FestkörpertheorieMünsterGermany
  2. 2.Theoretische Physik IIIUniversität BayreuthBayreuthGermany

Personalised recommendations