Advertisement

Journal of Computational Electronics

, Volume 15, Issue 4, pp 1148–1157 | Cite as

Towards realistic time-resolved simulations of quantum devices

  • Joseph Weston
  • Xavier Waintal
Article

Abstract

We report on our recent efforts to perform realistic simulations of large quantum devices in the time domain. In contrast to d.c. transport where the calculations are explicitly performed at the Fermi level, the presence of time-dependent terms in the Hamiltonian makes the system inelastic so that it is necessary to explicitly enforce the Pauli principle in the simulations. We illustrate our approach with calculations for a flying qubit interferometer, a nanoelectronic device that is currently under experimental investigation. Our calculations illustrate the fact that many degrees of freedom (16,700 tight-binding sites in the scattering region) and long simulation times (9500 times the inverse bandwidth of the tight-binding model) can be easily achieved on a local computer.

Keywords

Time-resolved Flying qubit Electronic interferometer 

References

  1. 1.
    Ashoori, R.C., Stormer, H.L., Pfeiffer, L.N., Baldwin, K.W., West, K.: Edge magnetoplasmons in the time domain. Phys. Rev. B 45(7), 3894–3897 (1992)CrossRefGoogle Scholar
  2. 2.
    Bautze, T., Süssmeier, C., Takada, S., Groth, C., Meunier, T., Yamamoto, M., Tarucha, S., Waintal, X., Bäuerle, C.: Theoretical, numerical, and experimental study of a flying qubit electronic interferometer. Phys. Rev. B 89(12), 125,432 (2014)CrossRefGoogle Scholar
  3. 3.
    Cini, M.: Time-dependent approach to electron transport through junctions: General theory and simple applications. Phys. Rev. B 22(12), 5887–5899 (1980)CrossRefGoogle Scholar
  4. 4.
    Dubois, J., Jullien, T., Portier, F., Roche, P., Cavanna, A., Jin, Y., Wegscheider, W., Roulleau, P., Glattli, D.C.: Minimal-excitation states for electron quantum optics using levitons. Nature 502(7473), 659–663 (2013)CrossRefGoogle Scholar
  5. 5.
    Fehlberg, D.E.: Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing 6(1–2), 61–71 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fève, G., Mahé, A., Berroir, J.M., Kontos, T., Plaçais, B., Glattli, D.C., Cavanna, A., Etienne, B., Jin, Y.: An on-demand coherent single-electron source. Science 316(5828), 1169–1172 (2007)CrossRefGoogle Scholar
  7. 7.
    Fruchart, M., Delplace, P., Weston, J., Waintal, X., Carpentier, D.: Probing (topological) Floquet states through DC transport. Phys. E: Low-Dimensional Syst. Nanost. 75, 287–294 (2016)CrossRefGoogle Scholar
  8. 8.
    Gaury, B., Waintal, X.: Dynamical control of interference using voltage pulses in the quantum regime. Nat. Commun. 5, 3844 (2014)CrossRefGoogle Scholar
  9. 9.
    Gaury, B., Waintal, X.: A computational approach to quantum noise in time-dependent nanoelectronic devices. Phys. E Low Dimensional Syst. Nanost. 75, 72–76 (2016)CrossRefGoogle Scholar
  10. 10.
    Gaury, B., Weston, J., Santin, M., Houzet, M., Groth, C., Waintal, X.: Numerical simulations of time-resolved quantum electronics. Phys. Rep. 534(1), 1–37 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gaury, B., Weston, J., Waintal, X.: Stopping electrons with radio-frequency pulses in the quantum Hall regime. Phys. Rev. B 90(16), 161,305 (2014)CrossRefGoogle Scholar
  12. 12.
    Gaury, B., Weston, J., Waintal, X.: The a.c. Josephson effect without superconductivity. Nat. Commun. 6, 6524 (2015)CrossRefGoogle Scholar
  13. 13.
    Groth, C.W., Wimmer, M., Akhmerov, A.R., Waintal, X.: Kwant: a software package for quantum transport. New J. Phys. 16(6), 063,065 (2014)CrossRefGoogle Scholar
  14. 14.
    Jauho, A.P., Wingreen, N.S., Meir, Y.: Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50(8), 5528–5544 (1994)CrossRefGoogle Scholar
  15. 15.
    Kamata, H., Ota, T., Muraki, K., Fujisawa, T.: Voltage-controlled group velocity of edge magnetoplasmon in the quantum Hall regime. Phys. Rev. B 81(8), 085,329 (2010)CrossRefGoogle Scholar
  16. 16.
    Kumada, N., Kamata, H., Fujisawa, T.: Edge magnetoplasmon transport in gated and ungated quantum Hall systems. Phys. Rev. B 84(4), 045,314 (2011)CrossRefGoogle Scholar
  17. 17.
    Kurth, S., Stefanucci, G., Almbladh, C.O., Rubio, A., Gross, E.K.U.: Time-dependent quantum transport: A practical scheme using density functional theory. Phys. Rev. B 72(3), 035,308 (2005)CrossRefGoogle Scholar
  18. 18.
    Landauer, R.: Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM J. Res. Dev. 1(3), 223–231 (1957)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Landauer, R.: Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine 21(172), 863–867 (1970)CrossRefGoogle Scholar
  20. 20.
    Moskalets, M.: Scattering matrix approach to non-stationary quantum transport. Imperial College Press, London (2012)zbMATHGoogle Scholar
  21. 21.
    Piessens, R., de Doncker-Kapenga, E., Überhuber, C.W., Kahaner, D.K.: Quadpack, springer series in computational mathematics, vol. 1. Springer, Berlin Heidelberg (1983)zbMATHGoogle Scholar
  22. 22.
    Rungger, I., Sanvito, S.: Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78(3), 035,407 (2008)CrossRefGoogle Scholar
  23. 23.
    Stefanucci, G., Leeuwen, R.v.: Nonequilibrium many-body theory of quantum systems: a modern introduction, 1 edn. Cambridge University Press, Cambridge (2013)Google Scholar
  24. 24.
    Takada, S., Bäuerle, C., Yamamoto, M., Watanabe, K., Hermelin, S., Meunier, T., Alex, A., Weichselbaum, A., von Delft, J., Ludwig, A., Wieck, A., Tarucha, S.: Transmission phase in the kondo regime revealed in a two-path interferometer. Phys. Rev. Lett. 113(12), 126,601 (2014)CrossRefGoogle Scholar
  25. 25.
    Takada, S., Yamamoto, M., Bäuerle, C., Watanabe, K., Ludwig, A., Wieck, A.D., Tarucha, S.: Measurement of the transmission phase of an electron in a quantum two-path interferometer. Appl. Phys. Lett. 107(6), 063,101 (2015)Google Scholar
  26. 26.
    Weston, J., Gaury, B., Waintal, X.: Manipulating Andreev and Majorana bound states with microwaves. Phys. Rev. B 92(2), 020,513 (2015)Google Scholar
  27. 27.
    Weston, J., Waintal, X.: Linear-scaling source-sink algorithm for simulating time-resolved quantum transport and superconductivity. Phys. Rev. B 93(13), 134,506 (2016)CrossRefGoogle Scholar
  28. 28.
    Wimmer, M.: Quantum transport in nanostructures: from computational concepts to spintronics in graphene and magnetic tunnel junctions, 1. aufl edn. No. 5 in Dissertationsreihe der Fakultät für Physik der Universität Regensburg. Univ.-Verl. Regensburg, Regensburg (2009)Google Scholar
  29. 29.
    Wingreen, N.S., Jauho, A.P., Meir, Y.: Time-dependent transport through a mesoscopic structure. Phys. Rev. B 48(11), 8487–8490 (1993)CrossRefGoogle Scholar
  30. 30.
    Zhong, Z., Gabor, N.M., Sharping, J.E., Gaeta, A.L., McEuen, P.L.: Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nat. Nano. 3(4), 201–205 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, INAC-SPSMSGrenobleFrance
  2. 2.CEA, INAC-SPSMSGrenobleFrance

Personalised recommendations