Journal of Computational Electronics

, Volume 15, Issue 3, pp 1095–1102 | Cite as

Simplified numerical simulation of organic photovoltaic devices

  • Chang-Hyun Kim
  • Jinwoo Choi
  • Yvan Bonnassieux
  • Gilles Horowitz


Finite-element modeling for efficient organic bulk-heterojunction photovoltaics is presented. Given the complexity of the architecture, it has been hard to devise a sufficiently compact description of the physics of charge and exciton dynamics. This paper delineates the most essential set of equations that allow to reproduce the major characteristics of a current–voltage curve measured under illumination. Parameters are extracted by optimization of a fabricated polymer/fullerene cell, and by deliberately changing key parameters, further understanding is established on the phenomenological manifestation of independent physical processes.


Organic electronics Numerical simulation Finite-element method Bulk-heterojunction Photovoltaics 



This work was supported by the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement number 310229 (SMARTONICS project), and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A4A01018560).


  1. 1.
    Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 47). Prog. Photovolt. 24, 3–11 (2016)CrossRefGoogle Scholar
  2. 2.
    Zhu, X., Kahn, A.: Electronic structure and dynamics at organic donor/acceptor interfaces. MRS Bull. 35, 443–448 (2010)CrossRefGoogle Scholar
  3. 3.
    Kippelen, B., Bredas, J.L.: Organic photovoltaics. Energy Environ. Sci. 2, 251–261 (2009)CrossRefGoogle Scholar
  4. 4.
    Scharber, M.C., Sariciftci, N.S.: Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 38, 1929–1940 (2013)CrossRefGoogle Scholar
  5. 5.
    Fjeldly, T.A., Ytterdal, T., Shur, M.S.: Introduction to Device Modeling and Circuit Simulation. Wiley, New York (1998)Google Scholar
  6. 6.
    Kim, C.H., Bonnassieux, Y., Horowitz, G.: Compact dc modeling of organic field-effect transistors: review and perspectives. IEEE Trans. Electron Devices 61, 278–287 (2014)CrossRefGoogle Scholar
  7. 7.
    Li, G., Liu, L., Wei, F., Xia, S., Qian, X.: Recent progress in modeling, simulation, and optimization of polymer solar cells. IEEE J. Photovolt. 2, 320–340 (2012)CrossRefGoogle Scholar
  8. 8.
    Blom, P.W.M., Mihailetchi, V.D., Koster, L.J.A., Markov, D.E.: Device physics of polymer:fullerene bulk heterojunction solar cells. Adv. Mater. 19, 1551–1566 (2007)Google Scholar
  9. 9.
    Brütting, W., Berleb, S., Mückl, A.G.: Device physics of organic light-emitting diodes based on molecular materials. Org. Electron. 2, 1–36 (2001)CrossRefGoogle Scholar
  10. 10.
    Kim, C.H., Yaghmazadeh, O., Tondelier, D., Jeong, Y.B., Bonnassieux, Y., Horowitz, G.: Capacitive behavior of pentacene-based diodes: quasistatic dielectric constant and dielectric strength. J. Appl. Phys. 109, 083710 (2011)Google Scholar
  11. 11.
    ATLAS User’s Manual.
  12. 12.
    Brédas, J.L., Norton, J.E., Cornil, J., Coropceanu, V.: Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42, 1691–1699 (2009)CrossRefGoogle Scholar
  13. 13.
    Clarke, T.M., Durrant, J.R.: Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010)CrossRefGoogle Scholar
  14. 14.
    Gao, F., Wang, J., Blakesley, J.C., Hwang, I., Li, Z., Greenham, N.C.: Quantifying loss mechanisms in polymer:fullerene photovoltaic devices. Adv. Energy Mater. 2, 956–961 (2012)Google Scholar
  15. 15.
    Janssen, R.A.J., Nelson, J.: Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25, 1847–1858 (2013)Google Scholar
  16. 16.
    Kim, C.H., Yaghmazadeh, O., Bonnassieux, Y., Horowitz, G.: Modeling the low-voltage regime of organic diodes: origin of the ideality factor. J. Appl. Phys. 110, 093722 (2011)Google Scholar
  17. 17.
    Koster, L.J.A., Smits, E.C.P., Mihailetchi, V.D., Blom, P.W.M.: Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205 (2005)Google Scholar
  18. 18.
    Reference Solar Spectral Irradiance: Air Mass 1.5.
  19. 19.
    Dang, M.T., Hirsch, L., Wantz, G.: P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597–3602 (2011)Google Scholar
  20. 20.
    Guan, Z.L., Kim, J.B., Wang, H., Jaye, C., Fischer, D.A., Loo, Y.L., Kahn, A.: Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend. Org. Electron. 11, 1779–1785 (2010)CrossRefGoogle Scholar
  21. 21.
    Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.Q., Dante, M., Heeger, A.J.: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)CrossRefGoogle Scholar
  22. 22.
    Terao, Y., Sasabe, H., Sasabe, H., Adachi, C.: Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Appl. Phys. Lett. 90, 103515 (2007)Google Scholar
  23. 23.
    Yassar, A., Miozzo, L., Gironda, R., Horowitz, G.: Rod-coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 38, 791–844 (2013)Google Scholar
  24. 24.
    Verploegen, E., Mondal, R., Bettinger, C.J., Sok, S., Toney, M.F., Bao, Z.: Effects of thermal annealing upon the morphology of polymer-fullerene blends. Adv. Funct. Mater. 20, 3519–3529 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.LPICM, Ecole Polytechnique, CNRSPalaiseauFrance
  2. 2.Research Institute for Solar and Sustainable Energies, School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuRepublic of Korea

Personalised recommendations