Journal of Computational Electronics

, Volume 15, Issue 1, pp 16–26 | Cite as

Modulation doping and energy filtering as effective ways to improve the thermoelectric power factor

  • Neophytos NeophytouEmail author
  • Mischa Thesberg


Thermoelectric (TE) materials have undergone revolutionary progress over the last 20 years. The thermoelectric figure of merit ZT, which quantifies the ability of a material to convert heat into electricity has more than doubled compared to traditional values of \(ZT\sim 1\), reaching values even beyond \(ZT\sim 2\) in some instances. These improvements are mostly attributed to drastic reductions of the thermal conductivity in nanostructured materials and nanocomposites. However, as thermal conductivities in these structures approach the amorphous limit, any further benefits to ZT must be achieved through the improvement of the thermoelectric power factor. In this work we review two of the most promising avenues to increase the power factor, namely (i) modulation doping and (ii) electron energy filtering, and present a computational framework for analysis of these mechanisms for two example cases: low-dimensional gated Si nanowires (electrostatically achieved doping), and superlattices (energy filtering over potential barriers). In the first case, we show that a material with high charge density, but free of ionized impurities, can provide up to a five-fold thermoelectric power factors increase compared to the power factor of the doped material, which highlights the benefits of modulation doping, or gating of materials. In the second case, we show that optimized construction of energy barriers within a superlattice material geometry can improve the power factor by up to \(\sim 30\,\%\). This paper is intended to be a review of our main findings with regards to efforts to improve the thermoelectric power factor through modulation doping and energy filtering.


Thermoelectricity Thermoelectric power factor Seebeck coefficient Modulation doping Energy filtering  Atomistic calculations Quantum transport 



Mischa Thesberg was supported by the Austrian Science Fund (FWF) contract P25368-N30. Some of the computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC).


  1. 1.
    Vining, C.B.: An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83–85 (2009)CrossRefGoogle Scholar
  2. 2.
    Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: Science 320, 634 (2008)CrossRefGoogle Scholar
  3. 3.
    Wu, H.J., Zhao, L.-D., Zheng, F.S., Wu, D., Pei, Y.L., Tong, X., Kanatzidis, M.G., He, J.Q.: Broad temperature plateau for thermoelectric figure of merit \(\text{ ZT }>2\) in phase-separated \(\text{ PbTe }_{0.7}\text{ S }_{0.3}\). Nat. Commun 5, 5515 (2014)CrossRefGoogle Scholar
  4. 4.
    Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G.: Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011)CrossRefGoogle Scholar
  5. 5.
    Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., Snyder, G.J.: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G.: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014)CrossRefGoogle Scholar
  7. 7.
    Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)CrossRefGoogle Scholar
  8. 8.
    Boukai, A.I., Bunimovich, Y., Kheli, T., Yu, J.-K., Goddard III, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)CrossRefGoogle Scholar
  9. 9.
    Li, D., Wu, Y., Fang, R., Yang, P., Majumdar, A.: Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003)CrossRefGoogle Scholar
  10. 10.
    Chen, G.: Phonon transport in low-dimensional structures. Semicond. Semimet. 71, 203–259 (2001)CrossRefGoogle Scholar
  11. 11.
    Chen, R., Hochbaum, A.I., Murphy, P., Moore, J., Yang, P., Majumdar, A.: Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008)CrossRefGoogle Scholar
  12. 12.
    Li, D., Huxtable, S.T., Abramsin, A.R., Majumdar, A.: Thermal transport in nanostructured solid-state cooling devices. Trans. ASME 127, 108–114 (2005)CrossRefGoogle Scholar
  13. 13.
    Martin, P., Aksamija, Z., Pop, E., Ravaioli, U.: Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102, 125503 (2009)CrossRefGoogle Scholar
  14. 14.
    Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)CrossRefGoogle Scholar
  15. 15.
    Garg, J., Chen, G.: Minimum thermal conductivity in superlattices: a first-principles formalism. Phys. Rev. B 87, 140302 (2013)CrossRefGoogle Scholar
  16. 16.
    Nielsch, K., Bachmann, J., Kimling, J., Böttner, H.: Thermoelectric nanostructures: from physical model systems towards nanograined composites. Adv. Energy Mater. 1, 713–731 (2011)CrossRefGoogle Scholar
  17. 17.
    Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.C.: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)CrossRefGoogle Scholar
  18. 18.
    Hicks, L.D., Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993)CrossRefGoogle Scholar
  19. 19.
    Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. USA 93, 7436–7439 (1996)CrossRefGoogle Scholar
  20. 20.
    Zeng, G., Bowers, J.E., Zide, J.M.O., Gossard, A.C., Kim, W., Singer, S., Majumdar, A., Singh, R., Bian, Z., Zhang, Y., Shakouri, A.: ErAs:InGaAs/InGaAlAsErAs:InGaAs/InGaAlAs superlattice thin-film power generator array. Appl. Phys. Lett. 88, 113502 (2006)CrossRefGoogle Scholar
  21. 21.
    Neophytou, N., Kosina, H.: Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires. Phys. Rev. B 83, 245305 (2011)CrossRefGoogle Scholar
  22. 22.
    Neophytou, N., Kosina, H.: On the interplay between electrical conductivity and seebeck coefficient in ultra-narrow silicon nanowires. J. Electron. Mater. 41(6), 1305–1311 (2012)CrossRefGoogle Scholar
  23. 23.
    Kim, R., Lundstrom, M.: Computational study of the Seebeck coefficient of one-dimensional composite nano-structures. J. Appl. Phys. 110, 034511 (2011)CrossRefGoogle Scholar
  24. 24.
    Kim, R., Lundstrom, M.S.: Computational study of energy filtering effects in one-dimensional composite nano-structures. J. Appl. Phys. 111, 024508 (2012)CrossRefGoogle Scholar
  25. 25.
    Zebarjadi, M., Joshi, G., Zhu, G., Yu, B., Minnich, A., Lan, Y., Wang, X., Dresselhaus, M., Ren, Z., Chen, G.: Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett. 11, 2225–2230 (2011)CrossRefGoogle Scholar
  26. 26.
    Yu, B., Zebarjadi, M., Wang, H., Lukas, K., Wang, H., Wang, D., Opeil, C., Dresselhaus, M., Chen, G., Ren, Z.: Nano Lett. 12(4), 2077–2082 (2012)CrossRefGoogle Scholar
  27. 27.
    Curtin, B.M., Codecido, E.A., Krämer, S., Bowers, J.E.: Field-effect modulation of thermoelectric properties in multigated silicon nanowires. Nano Lett. 13, 5503–5508 (2013)CrossRefGoogle Scholar
  28. 28.
    Neophytou, N., Kosina, H.: Gated Si nanowires for large thermoelectric power factors. Appl. Phys. Lett. 105, 073119 (2014)CrossRefGoogle Scholar
  29. 29.
    Samarelli, A., Llin, FerreL, Cecchi, S., Frigerio, J., Etzelstorfer, T., Müller, E., Zhang, Y., Watling, J.R., Chrastina, D., Isella, G., Stangl, J., Hague, J.P., Weaver, J.M.R., Dobson, P., Paul, D.J.: The thermoelectric properties of Ge/SiGe modulation doped superlattices. J. Appl. Phys. 113, 233704 (2013)CrossRefGoogle Scholar
  30. 30.
    Hou, Q.R., Gu, B.F., Chen, Y.B., He, Y.J., Sun, J.L.: Enhancement of the thermoelectric power factor of \(\text{ MnSi }_{1.7}\) film by modulation doping of Al and Cu. Appl. Phys. A 114, 943–949 (2014)CrossRefGoogle Scholar
  31. 31.
    Pei, Y.-L., Wu, H., Wu, D., Zheng, F., He, J.: High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J. Am. Chem. Soc. 136, 13902 (2014)CrossRefGoogle Scholar
  32. 32.
    Jaworski, C.M., Kulbachinskii, V., Heremans, J.P.: Antimony as an amphoteric dopant in lead telluride. Phys. Rev. B 80, 125208 (2009)CrossRefGoogle Scholar
  33. 33.
    Popescu, A., Woods, L.M., Martin, J., Nolas, G.S.: Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev. B 79, 205302 (2009)CrossRefGoogle Scholar
  34. 34.
    Neophytou, N., Zianni, X., Kosina, H., Frabboni, S., Lorenzi, B., Narducci, D.: Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si. Nanotechnology 24, 205402 (2013)CrossRefGoogle Scholar
  35. 35.
    Thesberg, M., Pourfath, M., Kosina, H., Neophytou, N.: The influence of non-idealities on the thermoelectric power factor of nanostructured superlattices. J. Appl. Phys 118, 224301 (2015)CrossRefGoogle Scholar
  36. 36.
    Thesberg, M., Pourfath, M., Neophytou, N., Kosina, H.: The fragility of thermoelectric power factor in cross-plane superlattices in the presence of nonidealities: a quantum transport simulation approach. J. Electron. Mater., online (2015)Google Scholar
  37. 37.
    Vashaee, D., Shakouri, A.: Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 92, 106103 (2004)CrossRefGoogle Scholar
  38. 38.
    Zhao, L.D., Lo, S.H., He, J.Q., Hao, L., Biswas, K., Androulakis, J., Wu, C.I., Hogan, T.P., Chung, D.Y., Dravid, V.P., Kanatzidis, M.G.: High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J. Am. Chem. Soc. 133, 20476–20487 (2011)CrossRefGoogle Scholar
  39. 39.
    Bahk, J.-H., Bian, Z., Shakouri, A.: Electron transport modeling and energy filtering for efficient thermoelectric \(\text{ Mg }_{2}\text{ Si }_{1-x}\text{ Sn }_{x}\) solid solutions. Phys. Rev. B 89, 075204 (2014)CrossRefGoogle Scholar
  40. 40.
    Bahk, J.-H., Shakouri, A.: Enhancing the thermoelectric figure of merit through the reduction of bipolar thermal conductivity with heterostructure barriers. Appl. Phys. Lett. 105, 052106 (2014)CrossRefGoogle Scholar
  41. 41.
    Narducci, D., Selezneva, E., Cerofolini, G., Frabboni, S., Ottaviani, G.: Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors. J. Solid State Chem. 193, 19–25 (2012)CrossRefGoogle Scholar
  42. 42.
    Liu, W., Yan, X., Chen, G., Ren, Z.: Recent advances in thermoelectric nanocomposites. Nano Energy 1, 42–56 (2012)CrossRefGoogle Scholar
  43. 43.
    Zide, J.M.O., Vashaee, D., Bian, Z.X., Zeng, G., Bowers, J.E., Shakouri, A., Gossard, A.C.: Demonstration of electron filtering to increase the Seebeck coefficient in \(\text{ In }_{0.53}\text{ Ga }_{0.47}\text{ As }/\text{ In }_{0.53}\text{ Ga }_{0.28}\text{ Al }_{0.19}\) as superlattices. Phys. Rev. B 74, 205335 (2006)CrossRefGoogle Scholar
  44. 44.
    Shakouri, A.: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)CrossRefGoogle Scholar
  45. 45.
    Alam, H., Ramakrishna, S.: Nonequilibrium green’s function treatment of phonon scattering in carbon-nanotube transistors. Nano Energy 2, 190–212 (2013)CrossRefGoogle Scholar
  46. 46.
    Tian, Y., Sakr, M.R., Kinder, J.M., Liang, D., MacDonald, M.J., Qiu, R.L.J., Gao, H.-J., Gao, X.P.A.: One-dimensional quantum confinement effect modulated thermoelectric properties in inas nanowires. Nano Lett. 12, 6492–6497 (2012)CrossRefGoogle Scholar
  47. 47.
    Moon, J., Kim, J.-H., Chen, Z.C.Y., Xiang, J., Chen, R.: Gate-modulated thermoelectric power factor of hole gas in Ge–Si core-shell nanowires. Nano Lett. 13, 1196–1202 (2013)CrossRefGoogle Scholar
  48. 48.
    Liang, W., Hochbaum, A.I., Fardy, M., Rabin, O., Zhang, M., Yang, P.: Field-effect modulation of Seebeck coefficient in single PbSe nanowires. Nano Lett. 9, 1689–1693 (2009)CrossRefGoogle Scholar
  49. 49.
    Neophytou, N., Baumgartner, O., Stanojevic, Z., Kosina, H.: Nonequilibrium green’s function treatment of phonon scattering in carbon-nanotube transistors. Solid State Electron. 90, 44–50 (2013)CrossRefGoogle Scholar
  50. 50.
    Boykin, T.B., Klimeck, G., Oyafuso, F.: Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 69, 115201 (2004)CrossRefGoogle Scholar
  51. 51.
    Neophytou, N., Paul, A., Lundstrom, M., Klimeck, G.: Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron. Dev. 55, 1286–1297 (2008)CrossRefGoogle Scholar
  52. 52.
    Lee, S., Oyafuso, F., Von Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316 (2004)CrossRefGoogle Scholar
  53. 53.
    Neophytou, N., Kosina, H.: Large enhancement in hole velocity and mobility in p-type [110] and [111] silicon nanowires by cross section scaling: an atomistic analysis. Nano Lett. 10, 4913–4919 (2010)CrossRefGoogle Scholar
  54. 54.
    Jin, S., Fischetti, M.V., Tang, T.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)CrossRefGoogle Scholar
  55. 55.
    Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M., Matsusue, T.: Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51, 1934 (1987)CrossRefGoogle Scholar
  56. 56.
    Uchida, K., Takagi, S.: Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 82, 2916 (2003)CrossRefGoogle Scholar
  57. 57.
    Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)CrossRefGoogle Scholar
  58. 58.
    Neophytou, N., Kosina, H.: Atomistic simulations of low-field mobility in Si nanowires: influence of confinement and orientation. Phys. Rev. B 84, 085313 (2011)CrossRefGoogle Scholar
  59. 59.
    Rameshan, K., Wong, N.A., Chan, K., Sim, S.P., Yang, C.Y.: Modeling inversion-layer carrier mobilities in all regions of MOSFET operation. Solid-State Electron. 46, 153–156 (2002)Google Scholar
  60. 60.
    Neophytou, N., Kosina, H.: Optimizing thermoelectric power factor by means of a potential barrier. J. Appl. Phys. 114, 044315 (2013)CrossRefGoogle Scholar
  61. 61.
    Nishio, Y., Hirano, T.: Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers. Jpn. J. Appl. Phys. 36, 170–174 (1997)CrossRefGoogle Scholar
  62. 62.
    Kim, R., Jeong, C., Lundstrom, M.S.: On momentum conservation and thermionic emission cooling. J. Appl. Phys. 107, 054502 (2010)CrossRefGoogle Scholar
  63. 63.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)Google Scholar
  64. 64.
    Koswatta, S.O., Hasan, S., Lundstrom, M.S., Anantram, M.P., Nikonov, D.E.: Nonequilibrium green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron. Dev. 54, 2339–2351 (2007)Google Scholar
  65. 65.
    Price, A., Martinez, A., Valin, R., Barker, J.R.: Impact of different electron-phonon scattering models on the electron transport in a quantum wire. J. Phys.: Conf. Ser. 526, 012007 (2014)Google Scholar
  66. 66.
    Rhyner, R., Luisier, M.: Phonon-limited low-field mobility in silicon: quantum transport vs. linearized Boltzmann transport equation. J. Appl. Phys. 114, 223708 (2013)CrossRefGoogle Scholar
  67. 67.
    Venkatasubramanian, R., Siivola, E., Colpitts, T., O’ Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)CrossRefGoogle Scholar
  68. 68.
    Shi, L., Jiang, J., Zhang, G., Li, B.: High thermoelectric figure of merit in silicon–germanium superlattice structured nanowires. Appl. Phys. Lett. 101, 233114 (2012)CrossRefGoogle Scholar
  69. 69.
    Hu, M., Poulikakos, D.: Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett. 12, 5487–5494 (2012)CrossRefGoogle Scholar
  70. 70.
    Saleemi, M., Famengo, A., Fiameni, S., Boldrini, S., Battiston, S., Johnsson, M., Muhammed, M., Toprak, M.S.: Modeling inversion-layer carrier mobilities in all regions of MOSFET operation. J. Alloys Compd. 619, 31–37 (2015)CrossRefGoogle Scholar
  71. 71.
    Perumal, S., Gorsse, S., Ail, U., Prakasam, M., Vivès, S., Decourt, R., Umarji, A.M.: Modeling inversion-layer carrier mobilities in all regions of MOSFET operation. Mater. Lett. 155, 41–43 (2015)CrossRefGoogle Scholar
  72. 72.
    Neophytou, N., Zianni, X., Kosina, H., Frabboni, S., Lorenzi, B., Narducci, D.: J. Electron. Mater. 43(6), 1896–1904 (2014)CrossRefGoogle Scholar
  73. 73.
    Narducci, D., Lorenzi, B., Zianni, X., Neophytou, N., Frabboni, S., Gazzadi, G.C., Roncaglia, A., Suriano, F.: Enhancement of the power factor in two-phase silicon-boron nanocrystalline alloys. Phys. Status Solidi a 211(6), 1255–1258 (2014)CrossRefGoogle Scholar
  74. 74.
    Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247 (1975)CrossRefGoogle Scholar
  75. 75.
    Orton, J.W., Powell, M.J.: The Hall effect in polycrystalline and powdered semiconductors. Rep. Prog. Phys. 43, 1263 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of EngineeringUniversity of WarwickCoventryUK
  2. 2.Institute for MicroelectronicsTechnical University of ViennaViennaAustria

Personalised recommendations