Journal of Computational Electronics

, Volume 15, Issue 1, pp 343–346 | Cite as

Response to “Comment on ‘Zero and negative energy dissipation at information-theoretic erasure”’

  • Laszlo Bela Kish
  • Claes-Göran Granqvist
  • Sunil P. Khatri
  • Ferdinand Peper
Article

Abstract

We prove that statistical information-theoretic quantities, such as information entropy, cannot generally be interrelated with the lower limit of energy dissipation during information erasure. We also point out that, in deterministic and error-free computers, the information entropy of memories does not change during erasure because its value is always zero. On the other hand, for information-theoretic erasure—i.e., “thermalization”/randomization of the memory—the originally zero information entropy (with deterministic data in the memory) changes after erasure to its maximum value, 1 bit/memory bit, while the energy dissipation is still positive, even at parameters for which the thermodynamic entropy within the memory cell does not change. Information entropy does not convert to thermodynamic entropy and to the related energy dissipation; they are quantities of different physical nature. Possible specific observations (if any) indicating convertibility are at most fortuitous and due to the disregard of additional processes that are present.

Keywords

Information Erasure Switching Energy dissipation Non-validity of Landauer’s theorem 

Notes

Acknowledgments

LK appreciates extensive discussions with Neal Anderson. Discussions with Tamas Horvath, Krishna Narayanan and Fred Green are also appreciated.

References

  1. 1.
    Kish, L.B., Granqvist, C.G., Khatri, S., Peper, F.: Zero and negative energy dissipation at information-theoretic erasure. J. Comput. Electron. (2015). doi: 10.1007/s10825-015-0754-5
  2. 2.
    Kish, L.B., Granqvist, C.G., Khatri, S., Peper, F.: Zero and negative energy dissipation at information-theoretic erasure. Version 1. arXiv:1507.08906v1
  3. 3.
    Anderson, N.G.: Information erasure in quantum systems. Phys. Lett. A 372, 5552–5555 (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Anderson, N.G.: Comment on “Zero and negative energy dissipation at information-theoretic erasure”. J. Comput. Electron. (2015). doi: 10.1007/s10825-015-0768-z
  5. 5.
    Kish, L.B., Granqvist, C.G., Khatri, S.P., Wen, H.: Demons: Maxwell’s demon, Szilard’s engine and Landauer’s erasure–dissipation. Int. J. Mod. Phys. Conf. Ser 33, 1460364 (2014). Open accessCrossRefGoogle Scholar
  6. 6.
    Kish, L.B., Granqvist, C.G.: Energy requirement of control: Comments on Szilard’s engine and Maxwell’s demon. EPL (Europhys. Lett.) 98, 68001 (2012)CrossRefGoogle Scholar
  7. 7.
    Kish, L.B., Granqvist, C.G.: Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control. PLoS One 7, e46800 (2012)CrossRefGoogle Scholar
  8. 8.
    Porod, W., Grondin, R.O., Ferry, D.K.: Dissipation in computation. Phys. Rev. Lett. 52, 232–235 (1984)CrossRefGoogle Scholar
  9. 9.
    Porod, W., Grondin, R.O., Ferry, D.K., Porod, G.: Dissipation in computation—Reply. Phys. Rev. Lett. 52, 1206–1206 (1984)CrossRefGoogle Scholar
  10. 10.
    Porod, W.: Energy requirements in communication—Comment. Appl. Phys. Lett. 52, 2191–2191 (1988)CrossRefGoogle Scholar
  11. 11.
    Norton, J.D.: Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Studies Hist. Philos. Mod. Phys. 36, 375–411 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Norton, J.D.: All shook up: fluctuations, Maxwell’s demon and the thermodynamics of computation. Entropy 15, 4432–4483 (2013)CrossRefGoogle Scholar
  13. 13.
    Kish, L.B., Granqvist, C.G, Khatri, S.P, Smulko, J.: Critical remarks on Landauer’s principle of erasure–dissipation, In: Proc. ICNF 2015 Conference, Xidian, China, (2015). doi: 10.1109/ICNF.2015.7288632
  14. 14.
    Gyftopoulos, E.P., von Spakovsky, M.R.: Comments on the breakdown of the Landauer bound for information erasure in the quantum regime. (2007). arXiv:0706.2176
  15. 15.
    Renyi, A.: Diary on Information Theory. Wiley, New York (1987)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Laszlo Bela Kish
    • 1
  • Claes-Göran Granqvist
    • 2
  • Sunil P. Khatri
    • 1
  • Ferdinand Peper
    • 3
  1. 1.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden
  3. 3.CiNet, NICT, and Osaka UniversitySuitaJapan

Personalised recommendations