Journal of Computational Electronics

, Volume 15, Issue 1, pp 27–33 | Cite as

Low-temperature enhancement of the thermoelectric Seebeck coefficient in gated 2D semiconductor nanomembranes

  • A. Kommini
  • Z. AksamijaEmail author


An increasing need for effective thermal sensors, together with dwindling energy resources, have created renewed interests in thermoelectric (TE), or solid-state, energy conversion and refrigeration using semiconductor based nanostructures. Effective control of electron and phonon transport due to confinement, interface, and quantum effects has made nanostructures a good way to achieve more efficient thermoelectric energy conversion. Theoretically, a narrow delta-function shaped transport distribution function (TDF) is believed to provide the highest Seebeck coefficient, but has proven difficult to achieve in practice. We propose a novel approach to achieving a narrow window-shaped TDF through a combination of a step-like 2-dimensional density-of-states (DOS) and inelastic optical phonon scattering. A shift in the onset of scattering with respect to the step-like DOS creates a TDF which peaks over a narrow band of energies. We perform a numerical simulation of carrier transport in silicon nanoribbons based on numerically solving the coupled Schrödinger-Poisson equations together with transport in the semi-classical Boltzmann formalism. Our calculations confirm that inelastic scattering of electrons, combined with the step-like DOS in 2-dimensional nanostructures leads to the formation of a narrow window-function shaped TDF and results in enhancement of Seebeck coefficient beyond what was already achieved through confinement alone. A further analysis on maximizing this enhancement by tuning the material properties is also presented.


Thermo-electric Seebeck Phonon Schroedinger–Poisson Boltzmann transport 


  1. 1.
    Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.G.: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22(36), 3970–3980 (2010)CrossRefGoogle Scholar
  2. 2.
    DiSalvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703–706 (1999)CrossRefGoogle Scholar
  3. 3.
    Majumdar, A.: Thermoelectric devices: helping chips to keep their cool. Nat. Nanotechnol. 4, 214–215 (2009)CrossRefGoogle Scholar
  4. 4.
    Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235–238 (2009)CrossRefGoogle Scholar
  5. 5.
    Hochbaum, A., Chen, R., Delgado, R., Liang, W., Garnett, E., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)CrossRefGoogle Scholar
  6. 6.
    Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu III, J., Goddard III, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008)CrossRefGoogle Scholar
  7. 7.
    Huang, M., Ritz, C.S., Novakovic, B., Yu, D., Zhang, Y., Flack, F., Savage, D.E., Evans, P.G., Knezevic, I., Liu, F., Lagally, M.G.: Mechano-electronic superlattices in silicon nanoribbons. ACS Nano 3, 721–727 (2009)CrossRefGoogle Scholar
  8. 8.
    Ramayya, E.B., Maurer, L.N., Davoody, A.H., Knezevic, I.: Thermoelectric properties of ultrathin silicon nanowires. Phys. Rev. B 86, 115328 (2012)CrossRefGoogle Scholar
  9. 9.
    Goldsmid, H.: Electronic Refrigeration. Pion, London (1986)Google Scholar
  10. 10.
    Chen, R., Hochbaum, A.I., Murphy, P., Moore, J., Yang, P., Majumdar, A.: Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008)Google Scholar
  11. 11.
    Markussen, T., Jauho, A.-P., Brandbyge, M.: Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics. Phys. Rev. Lett. 103, 055502 (2009)CrossRefGoogle Scholar
  12. 12.
    Shi, L.: Thermal and thermoelectric transport in nanostructures and low-dimensional systems. Nanoscale Microscale Thermophys. Eng. 16(2), 79–116 (2012)CrossRefGoogle Scholar
  13. 13.
    Zhou, J., Yang, R., Chen, G., Dresselhaus, M.S.: Optimal bandwidth for high efficiency thermoelectrics. Phys. Rev. Lett. 107, 226601 (2011)CrossRefGoogle Scholar
  14. 14.
    Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. 93(15), 7436–7439 (1996)CrossRefGoogle Scholar
  15. 15.
    Kim, R., Datta, S., Lundstrom, M.S.: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105(3), 034506 (2009)CrossRefGoogle Scholar
  16. 16.
    Hicks, L.D., Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993)CrossRefGoogle Scholar
  17. 17.
    Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437 (1982)CrossRefGoogle Scholar
  18. 18.
    Wickramaratne, D., Zahid, F., Lake, R.K.: Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 140(12), 124710 (2014)CrossRefGoogle Scholar
  19. 19.
    Aksamija, Z., Knezevic, I.: Thermoelectric properties of silicon nanostructures. J. Comput. Electron. 9, 173 (2010)CrossRefGoogle Scholar
  20. 20.
    Ryu, H., Aksamija, Z., Paskiewicz, D., Scott, S., Lagally, M., Knezevic, I., Eriksson, M.: Quantitative determination of contributions to the thermoelectric power factor in si nanostructures. Phys. Rev. Lett. 105, 256601 (2010)CrossRefGoogle Scholar
  21. 21.
    Shakouri, A.: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41(1), 399–431 (2011)CrossRefGoogle Scholar
  22. 22.
    Ziman, J.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press Inc., Oxford (1960)zbMATHGoogle Scholar
  23. 23.
    Knezevic, I., Ramayya, E.B., Vasileska, D., Goodnick, S.M.: Diffusive transport in quasi-2d and quasi-1d electron systems. J. Comput. Theor. Nanosci. 6(8), 1725–1753 (2009)CrossRefGoogle Scholar
  24. 24.
    Fischetti, M.V., Laux, S.E.: Monte carlo study of electron transport in silicon inversion layers. Phys. Rev. B 48, 2244–2274 (1993)CrossRefGoogle Scholar
  25. 25.
    Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)CrossRefGoogle Scholar
  26. 26.
    Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band k \(\cdot \) p calculation of the hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94(2), 1079–1095 (2003)CrossRefGoogle Scholar
  27. 27.
    Ridley, B.K.: Quantum Processes in Semiconductors. Oxford Science Publications, Oxford (2000)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of Massachusetts–AmherstAmherstUSA

Personalised recommendations