Journal of Computational Electronics

, Volume 15, Issue 1, pp 335–339 | Cite as

Zero and negative energy dissipation at information-theoretic erasure

  • Laszlo Bela Kish
  • Claes-Göran Granqvist
  • Sunil P. Khatri
  • Ferdinand Peper
Article

Abstract

We introduce information-theoretic erasure based on Shannon’s binary channel formula. It is pointed out that this type of erasure is a natural energy-dissipation-free way in which information is lost in double-potential-well memories, and it may be the reason why the brain can forget things effortlessly. We also demonstrate a new non-volatile, charge-based memory scheme wherein the erasure can be associated with even negative energy dissipation; this implies that the memory’s environment is cooled during information erasure and contradicts Landauer’s principle of erasure dissipation. On the other hand, writing new information into the memory always requires positive energy dissipation in our schemes. Finally, we show a simple system where even a classical erasure process yields negative energy dissipation of arbitrarily large energy.

Keywords

Erasure Zero energy dissipation Negative energy dissipation 

References

  1. 1.
    Alicki, R.: Stability versus reversibility in information processing. Int. J. Mod. Phys. Conf. Ser. 33, 1460353 (2014)CrossRefGoogle Scholar
  2. 2.
    Kish, L.B., Granqvist, C.G.: Energy requirement of control: Comments on Szilard’s engine and Maxwell’s demon. EPL (Europhys. Lett.) 98, 68001 (2012)CrossRefGoogle Scholar
  3. 3.
    Kish, L.B., Granqvist, C.G.: Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control. PLoS One 7, e46800 (2012)CrossRefGoogle Scholar
  4. 4.
    Liang, Y., Poor, H.V., Shamai, S.: Information theoretic security. Found. Trends Commun. Inf. Theory 5, 355–580 (2008). doi:10.1561/0100000036 CrossRefMATHGoogle Scholar
  5. 5.
    Anderson, N.G.: Information erasure in quantum systems. Phys. Lett. A 372, 5552–5555 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Maroney, O.J.E.: Generalizing Landauer’s principle. Phys. Rev. E 79, 031105 (2009)Google Scholar
  7. 7.
    Kish, L.B., Granqvist, C.G., Khatri, S.P., Smulko, J.: “Critical remarks on Landauer’s principle of erasure–dissipation”, In: Proceedings of ICNF 2015 Conference, Xidian, China, 2015, to be published; preprint: http://vixra.org/abs/1503.0258; arXiv:1412.2166
  8. 8.
    Porod, W., Grondin, R.O., Ferry, D.K.: Dissipation in computation. Phys. Rev. Lett. 52, 232–235 (1984)Google Scholar
  9. 9.
    Porod, W., Grondin, R.O., Ferry, D.K., Porod, G.: Dissipation in computation—Reply. Phys. Rev. Lett. 52, 1206–1206 (1984)CrossRefGoogle Scholar
  10. 10.
    Porod, W.: Energy requirements in communication—Comment. Appl. Phys. Lett. 52, 2191–2191 (1988)CrossRefGoogle Scholar
  11. 11.
    Norton, J.D.: Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 36, 375–411 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Norton, J.D.: All shook up: Fluctuations, Maxwell’s demon and the thermodynamics of computation. Entropy 15, 4432–4483 (2013)CrossRefGoogle Scholar
  13. 13.
    Renyi, A.: Diary on Information Theory. Wiley, New York (1987)MATHGoogle Scholar
  14. 14.
    Beisbart, C., Norton, J.D.: Why Monte Carlo simulations are inferences and not experiments. Int. Stud. Philos. Sci. 26, 403–422 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gyftopoulos, E.P., von Spakovsky, M.R.: “Comments on the breakdown of the Landauer bound for information erasure in the quantum regime”, http://arxiv.org/abs/0706.2176 (2007)
  16. 16.
    Kish, L.B., Granqvist, C.G., Khatri, S.P., Wen, H.: Demons: Maxwell’s demon, Szilard’s engine and Landauer’s erasure-dissipation. Int. J. Mod. Phys. Conf. Ser. 33, 1460364 (2014)CrossRefGoogle Scholar
  17. 17.
    Bennett, C.H.: Demons, engines and the second Law. Sci. Am. 257, 108–116 (1987)CrossRefGoogle Scholar
  18. 18.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 261–269 (1961)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Laszlo Bela Kish
    • 1
  • Claes-Göran Granqvist
    • 2
  • Sunil P. Khatri
    • 1
  • Ferdinand Peper
    • 3
  1. 1.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden
  3. 3.CiNet, NICTOsaka UniversitySuitaJapan

Personalised recommendations