Journal of Computational Electronics

, Volume 14, Issue 4, pp 922–929 | Cite as

Domain decomposition strategies for the two-dimensional Wigner Monte Carlo Method

Article

Abstract

A domain decomposition approach for the parallelization of the Wigner Monte Carlo method allows the huge memory requirements to be distributed amongst many computational units, thereby making large multi-dimensional simulations feasible. Two domain decomposition techniques—a uniform slab and uniform block decomposition—are compared and the design and implementation of the block decomposition approach, using the message passing interface, is discussed. The parallel performance of the two approaches is evaluated by simulating a representative physical problem. Our results show that the presumably inferior slab decomposition method is in fact superior to the block decomposition approach, due to the additional overhead incurred by the block decomposition method to set up its communication layer.

Keywords

Wigner Monte Carlo Domain decomposition Message passing interface 

References

  1. 1.
    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. Lett. 40, 749 (1932). doi:10.1103/PhysRev.40.749 Google Scholar
  2. 2.
    Querlioz, D., Dollfus, P.: The Wigner Monte-Carlo Method for Nanoelectronic Devices: Particle Description of Quantum Transport and Decoherence. Wiley, New York (2010). ISBN: 9781848211506Google Scholar
  3. 3.
    Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004). doi:10.1103/PhysRevB.70.115319
  4. 4.
    Nedjalkov, M., Schwaha, P., Selberherr, S., Sellier, J.M., Vasileska, D.: Wigner quasi-particle attributes—an asymptotic perspective. Appl. Phys. Lett. 102(16), 163113 (2013). doi:10.1063/1.4802931 CrossRefGoogle Scholar
  5. 5.
    Sellier, J., Dimov, I.: The Wigner–Boltzmann Monte Carlo method applied to electron transport in the presence of a single dopant. Comput. Phys. Commun. 185(10), 2427 (2014). doi:10.1016/j.cpc.2014.05.013 CrossRefGoogle Scholar
  6. 6.
    Sellier, J., Nedjalkov, M., Dimov, I., Selberherr, S.: Two-dimensional transient Wigner particle model. In: Proceedings of the 18th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 404–407 (2013). doi:10.1109/SISPAD.2013.6650660
  7. 7.
    Sellier, J.M., Nedjalkov, M., Dimov, I., Selberherr, S.: The role of annihilation in a Wigner Monte Carlo approach. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) Large-Scale Scientific Computing. Springer, Berlin (2014). doi:10.1007/978-3-662-43880-0_20
  8. 8.
    Ellinghaus, P., Weinbub, J., Nedjalkov, M., Selberherr, S., Dimov, I.: Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition. J. Comput. Electron. 14(1), 151 (2015). doi:10.1007/s10825-014-0635-3 CrossRefGoogle Scholar
  9. 9.
    Dimov, I.: Monte Carlo Methods For Applied Scientists. World Scientific Publishing, Singapore (2005). ISBN: 9789810223298Google Scholar
  10. 10.
    Weinbub, J., Ellinghaus, P., Selberherr, S.: Parallelization of the two-dimensional Wigner Monte Carlo method. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) Large-Scale Scientific Computing. Springer, Berlin (2015, in press)Google Scholar
  11. 11.
    Vienna, W.D.: Wigner Ensemble Monte Carlo Simulator. (2015). http://viennawd.sourceforge.net/
  12. 12.
    Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and Engineers. CRC Press, Boca Raton, FL (2010). ISBN: 9781439811924CrossRefGoogle Scholar
  13. 13.
    Vienna Scientific Cluster. VSC-3. (2015). http://vsc.ac.at/

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations