Journal of Computational Electronics

, Volume 14, Issue 4, pp 859–863

# Boundary conditions and the Wigner equation solution

• Ivan Dimov
• Mihail Nedjalkov
• Jean-Michel Sellier
• Siegfried Selberherr
Article

## Abstract

We consider the existence and uniqueness of the solution of the Wigner equation in the presence of boundary conditions. The equation, describing electron transport in nanostructures, is analyzed in terms of the Neumann series expansion of the corresponding integral form, obtained with the help of classical particle trajectories. It is shown that the mathematical aspects of the solution can not be separated from the physical attributes of the problem. In the presented analysis these two sides of the problem mutually interplay, which is of importance for understanding of the peculiarities of Wigner-quantum transport. The problem is first formulated as the long time limit of a general evolution process posed by initial and boundary conditions. Then the Wigner equation is reformulated as a second kind of a Fredholm integral equation which is of Volterra type with respect to the time variable. The analysis of the convergence of the corresponding Neumann series, sometimes called Liouville–Neumann series, relies on the assumption for reasonable local conditions obeyed by the kernel.

### Keywords

Wigner equation Monte Carlo method Boundary conditions Convergence

### References

1. 1.
Dimov, I.: Monte Carlo Methods for Applied Scientists, p. 291. World Scientific, London (2008)
2. 2.
Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319–115335 (2004)
3. 3.
Li, R., Lu, T., Sun, Z.: Stationary Wigner equation with inflow boundary conditions: will a symmetric potential yield a symmetric solution? SIAM J. Appl. Math. 74, 885–897 (2014)
4. 4.
Rosati, R., Dolcini, F., Iotti, R.C., Rossi, F.: Wigner-function formalism applied to semiconductor quantum devices: failure of the conventional boundary condition scheme. Phys. Rev. B 88, 035401 (2013)
5. 5.
Tatarskii, V.I.: The wigner representation of quantum mechanics. sov. phys. usp. 26, 311–327 (1983)
6. 6.
Dias, N.C., Prata, J.N.: Admissible states in quantum phase space. Ann. Phys. 313, 110–146 (2004)
7. 7.
Frensley, W.: Wigner-function model of resonant-tunneling semiconductor device. Phys. Rev. B 36(3), 1570–1580 (1987)
8. 8.
Nashed, M., Wahba, G.: Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind. Math. Comput. 28, 69–80 (1974)
9. 9.
Nedjalkov, M., Querlioz, D., Dollfus, P., Kosina, H.: Wigner function approach. In: Vasileska, D., Goodnick, S.M. (eds.) Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling. Springer, Berlin (2011)Google Scholar
10. 10.
Bertoni, A., Bordone, P., Ferrari, G., Giacobbi, N., Jacoboni, C.: Proximity effect of the contacts on electron transport in mesoscopic devices. J. Comput. Electr. 2, 137–140 (2003)
11. 11.
Ferrari, G., Bordone, P., Jacoboni, C.: Electron dynamics inside short-coherence systems. Phys. Lett. A 356, 371–375 (2006)
12. 12.
Sellier, J.M., Nedjalkov, M., Dimov, I.: An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism. Phys. Rep. 577, 1–34 (2015)
13. 13.
Nedjalkov, M., Selberherr, S., Ferry, D.K., Vasileska, D., Dollfus, P., Querlioz, D., Dimov, I., Schwaha, P.: Physical scales in the Wigner-Boltzmann equation. Ann. Phys. 328, 220–237 (2013)

## Authors and Affiliations

• Ivan Dimov
• 1
• Mihail Nedjalkov
• 2
• Jean-Michel Sellier
• 1
• Siegfried Selberherr
• 2