Advertisement

Journal of Computational Electronics

, Volume 14, Issue 2, pp 619–626 | Cite as

The quantum transport of pyrene and its silicon-doped variant: a DFT-NEGF approach

  • A. Rastkar
  • B. Ghavami
  • J. Jahanbin
  • S. Afshari
  • M. Yaghoobi
Article

Abstract

The quantum conductance properties of pyrene molecule and its silicone-doped variant between semi- infinite aluminum nano-chains were investigated using the density functional theory combined with the nonequilibrium Green function method. Electronic transport computations were carried out in the bias voltage ranging from 0.0 to +2.0 V divided by 0.1 V step-sized intervals and under the gate potentials including \(-\)3.0, 0.0 and +3.0 V. The current-bias curves at the considered bias and gates potential showed regions with negative differential resistance (NDR). The effects of the variations of the gates on the NDR characteristics, including the number of NDR peaks, bias range and current maxima’s at the peak, have been discussed and the potential applicability of the devices as nano-switches and multi-nano-switches have been highlighted. The transmission spectrum along with the density of states (DOS) and projected DOS (PDOS) has also been presented and transmission variations have been addressed in terms of the DOS and PDOS variations. Quantum conductance at zero bias versus the gate potential has also been presented.

Keywords

Density functional theory Density of states Nonequilibrium Green function Negative differential resistance 

Notes

Acknowledgments

This research was supported by a research fund “(No. 217/D/5666)” from Azarbiajan Shahid Madani University.

References

  1. 1.
    Nitzan, A.: Electron transmission through molecules and molecular interfaces. Ann. Rev. Phys. Chem. 52, 681 (2001)CrossRefGoogle Scholar
  2. 2.
    Heath, J.R., Ratner, M.A.: Molecular electronics. Phys. Today 56, 43–49 (2003)CrossRefGoogle Scholar
  3. 3.
    Joachim, C., Ratner, M.A.: Molecular electronics: some views on transport junctions and beyond. Proc. Natl. Acad. Sci. USA 102, 8801–8808 (2005)CrossRefGoogle Scholar
  4. 4.
    Tour, J.M.: Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming. World Scientific, New Jersey (2003)CrossRefGoogle Scholar
  5. 5.
    Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)CrossRefGoogle Scholar
  6. 6.
    Darancet, P., Widawsky, J., Choi, H., Venkataraman, L., Neaton, J.: Quantitative current–voltage characteristics in molecular junctions from first principles. Nano Lett. 12, 6250–6254 (2012)CrossRefGoogle Scholar
  7. 7.
    Paulsson, M., Zahid, F., Datta, S.: Resistance of a molecule. In: Brenner, D., Lyshevski, S., Iafrate, G. (eds.) Engineering and Technology Handbook, p. 1080. CRC Press, Boca Raton (2007)Google Scholar
  8. 8.
    Haug, H., Jauho, A.P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (2007)Google Scholar
  9. 9.
    Caroli, C., Combescot, R., Nozieres, P., Saint-James, D.: Direct calculation of the tunneling current. J. Phys. C: Solid State Phys. 4, 916–929 (1971)CrossRefGoogle Scholar
  10. 10.
    Schwinger, J.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407–432 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Keldysh, L.V.: Diagram Technique for Nonequilibrium Processes. J. Phys. JETP 20, 1018 (1965)MathSciNetGoogle Scholar
  12. 12.
    Reddy, D., Register, L.F., Carpenter, G.D., Banerjee, S.K.: Graphene field-effect transistors. J. Phys. D: Appl. Phys. 44, 313001 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, H., Chan, G.K.L.: Self-interaction and molecular Coulomb blockade transport in ab initio Hartree–Fock theory. Phys. Rev. B 76, 193310 (2007)CrossRefGoogle Scholar
  14. 14.
    Rocha, A.R., Garcia-Suarez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006)CrossRefGoogle Scholar
  15. 15.
    Bilic, A., Sanvito, S.: Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study. J. Phys.: Condens. Matter 25, 275301 (2013)Google Scholar
  16. 16.
    Wu, J., Pisula, W., Mullen, K.: Graphene molecules as potential material for electronics. Chem. Rev. 107, 718–747 (2007)CrossRefGoogle Scholar
  17. 17.
    Bilic, A., Gale, J.D., Sanvito, S.: From fused aromatics to graphene-like nanoribbons: the effects of multiple terminal groups, length and symmetric pathways on charge transport. Phys. Rev. B 84, 205436 (2011)CrossRefGoogle Scholar
  18. 18.
    Wang, X., Sun, G., Routh, P., Kim, D.H., Chen, P.: Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098 (2014)CrossRefGoogle Scholar
  19. 19.
    Hasmy, A., Perez-Jimenez, A.J., Palacios, J.J., Garcia-Mochales, P., Costa-Kramer, J.L., Diaz, M., Medina, E., Serena, P.A.: Ballistic resistivity in aluminum nanocontacts. Phys. Rev. B 72, 245405 (2005)CrossRefGoogle Scholar
  20. 20.
    Scheer, E., Agrait, N., Cuevas, J.C., Yeyati, A.L., Ludoph, B., Martin-Rodero, A., Rubio, G., Bollinger, R., Ruitenbeek, JMv, Urbina, C.: The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394, 154–157 (1998)CrossRefGoogle Scholar
  21. 21.
    Schee, E., Joyez, P., Esteve, D., Urbina, C., Devoret, M.H.: Conduction channel transmissions of atomic-size aluminum contacts. Phys. Rev. Lett. 78, 3535–3538 (1997)CrossRefGoogle Scholar
  22. 22.
    Simbeck, A.J., Lanzillo, N., Kharche, N., Verstraete, M.J., Nayak, S.K.: Aluminum conducts better than copper at the atomic scale: a first-principles study of metallic atomic wires. ACS Nano 6, 10449–10455 (2012)Google Scholar
  23. 23.
    Mahmoud, A., Lugli, P.: Study on molecular devices with negative differential resistance. Appl. Phys. Lett 103, 033506 (2013)CrossRefGoogle Scholar
  24. 24.
    Chen, S.L., Griffin, P.B., Plummer, J.D.: Negative differential resistance circuit design and memory applications. IEEE Trans. Electron Devices 56, 634–640 (2009)CrossRefGoogle Scholar
  25. 25.
    Saha, K.K., Nikolic, B.K.: Negative differential resistance in graphene-nanoribbon carbon-nanotube crossbars: a first-principles multiterminal quantum transport study. J. Comput. Electron. 12, 542–552 (2013)CrossRefGoogle Scholar
  26. 26.
    Kondo, H., Kino, H., Nara, J., Ozaki, T., Ohno, T.: Contact-structure dependence of transport properties of a single organic molecule between Au electrodes. Phys. Rev. B 73, 235323 (2006)CrossRefGoogle Scholar
  27. 27.
    Ozaki, T., Nishio, K., Kino, H.: Efficient implementation of the nonequilibrium Green function method for electronic transport calculations. Phys. Rev. B 81, 035116 (2010)CrossRefGoogle Scholar
  28. 28.
    Chen, G., Mukamel, S.: Reduced electronic density matrices, effective Hamiltonians, and nonlinear susceptibilities of conjugated polyenes. J. Chem. Phys. 103, 9355–9362 (1995)CrossRefGoogle Scholar
  29. 29.
    Landauer, R.: Spatial variation of currents and fields. IBM J. Res. Dev. 1, 233 (1957)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Buttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)CrossRefGoogle Scholar
  31. 31.
    Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B. 63, 245407 (2001)CrossRefGoogle Scholar
  32. 32.
    Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 65, 165401 (2002)CrossRefGoogle Scholar
  33. 33.
    URL http://www.openmx-square.org. The code, OPENMX, pseudoatomic basis functions, and pseudo-potentials are available on a web site: http://www.openmx-square.org
  34. 34.
    Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  35. 35.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  36. 36.
    Wu, Y., Farmer, D.B., Zhu, W., Han, S.J., Dimitrakopoulos, C.D., Bol, A.A., Avouris, P., Lin, Y.M.: Three-terminal graphene negative differential resistance devices. ACS Nano 6(3), 2610–2616 (2012)Google Scholar
  37. 37.
    Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)CrossRefzbMATHGoogle Scholar
  38. 38.
    Briet, G., Wigner, E.: Capture of slow neutrons. Phys. Rev. 49, 519–531 (1936)CrossRefGoogle Scholar
  39. 39.
    Sowa-Rykowska, A., Adamowski, J.: Fano resonances in current–voltage characteristics of nanowires with embedded quantum dots. Phys. Rev. B 82, 195311 (2010)CrossRefGoogle Scholar
  40. 40.
    Ke, S.H., Baranger, H.U., Yang, W.: Electron transport through molecules: self-consistent and non-self-consistent approaches. Phys. Rev. B 70, 085410 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Rastkar
    • 1
  • B. Ghavami
    • 1
  • J. Jahanbin
    • 2
  • S. Afshari
    • 2
  • M. Yaghoobi
    • 1
  1. 1.Molecular Simulation Laboratory, Department of Physics, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Molecular Simulation Laboratory, Department of Chemistry, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations