Journal of Computational Electronics

, Volume 14, Issue 2, pp 416–424 | Cite as

Percolation transport study in nitride based LED by considering the random alloy fluctuation



Recent studies show that the random alloy fluctuation plays a very important role in the carrier transport and light emission properties of InGaN quantum well light emitting diodes (LEDs). Due to the existence of polarization field, the composition fluctuation does not only affect the carrier localization effect but also the fluctuation of potential barrier induced by the polarization field. In this paper, the carrier percolation transport in the random alloy system, including the effect of the monopolar electron transport in the n-i-n InGaN quantum well and the influence of the different electron blocking layers to the p–n LED will be studied to analyze the influence to current–voltage curve and internal quantum efficiency.


InGaN AlGaN Random alloy fluctuation Electron blocking layer (EBL) Light emitting diode (LED) Droop 


  1. 1.
    Delaney, K.T., Rinke, P., Van de Walle, C.G.: Auger recombination rates in nitrides from first principles. Appl. Phys. Lett. 94(19), 191109 (2009)CrossRefGoogle Scholar
  2. 2.
    Kioupakis, E., Rinke, P., Delaney, K.T., Van de Walle, C.G.: Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98(16), 161107 (2011)CrossRefGoogle Scholar
  3. 3.
    Ryu, H.-Y., Kim, H.-S., Shim, J.-I.: Rate equation analysis of efficiency droop in InGaN light-emitting diodes. Appl. Phys. Lett. 95(8), 081114 (2009)CrossRefGoogle Scholar
  4. 4.
    Iveland, J., Martinelli, L., Peretti, J., Speck, J.S., Weisbuch, C.: Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013)CrossRefGoogle Scholar
  5. 5.
    Bertazzi, F., Goano, M., Bellotti, E.: A numerical study of Auger recombination in bulk InGaN. Appl. Phys. Lett. 97(23), 231118 (2010)CrossRefGoogle Scholar
  6. 6.
    Shen, Y.C., Mueller, G.O., Watanabe, S., Gardner, N.F., Munkholm, A., Krames, M.R.: Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91(14), 141101 (2007)CrossRefGoogle Scholar
  7. 7.
    Ryu, H.-Y., Shin, D.-S., Shim, J.-I.: Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material. Appl. Phys. Lett. 100(13), 131109 (2012)CrossRefGoogle Scholar
  8. 8.
    Ni, X., Li, X., Lee, J., Liu, S., Avrutin, V., Matulionis, A., Ozgur, U., Morkoc, H.: Pivotal role of ballistic and quasi-ballistic electrons on LED efficiency. Superlattices Microstruct. 48, 133–153 (2010)CrossRefGoogle Scholar
  9. 9.
    Akyol, F., Nath, D.N., Krishnamoorthy, S., Park, P.S., Rajan, S.: Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes. Appl. Phys. Lett. 100(11), 111118 (2012)CrossRefGoogle Scholar
  10. 10.
    Xie, J., Ni, X., Fan, Q., Shimada, R., Özgür, Ümit, Morkoç, H.: On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers. Appl. Phys. Lett. 93(12), 121107 (2008)CrossRefGoogle Scholar
  11. 11.
    Liu, J.P., Ryou, J.-H., Dupuis, R.D., Han, J., Shen, G.D., Wang, H.B.: Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes. Appl. Phys. Lett. 93(2), 021102 (2008)CrossRefGoogle Scholar
  12. 12.
    Wu, Y.-R., Shivaraman, R., Wang, K.-C., Speck, J.S.: Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure. Appl. Phys. Lett. 101(8), 083505 (2012)CrossRefGoogle Scholar
  13. 13.
    Yang, T.-J., Shivaraman, R., Speck, J.S., Wu, Y.-R.: The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior. J. Appl. Phys. 116(11), 113104 (2014)CrossRefGoogle Scholar
  14. 14.
    Riley, J.R., Detchprohm, T., Wetzel, C., Lauhon, L.J.: On the reliable analysis of indium mole fraction within \(\text{ In }_{x}\text{ Ga }_{1-x}\text{ N }\) quantum wells using atom probe tomography. Appl. Phys. Lett. 104(15), 152102 (2014)CrossRefGoogle Scholar
  15. 15.
    Mazumder, B., Esposto, M., Hung, T.H., Mates, T., Rajan, S., Speck, J.S.: Characterization of a dielectric/GaN system using atom probe tomography. Appl. Phys. Lett. 103(15), 151601 (2013)CrossRefGoogle Scholar
  16. 16.
    Shivaraman, R., Kawaguchi, Y., Tanaka, S., DenBaars, S., Nakamura, S., Speck, J.: Comparative analysis of \(20\overline{2}1\) and \(20\overline{2}\overline{1}\) semipolar GaN light emitting diodes using atom probe tomography. Appl. Phys. Lett. 102(25), 251104–251114 (2013)CrossRefGoogle Scholar
  17. 17.
    Bennett, S.E., Saxey, D.W., Kappers, M.J., Barnard, J.S., Humphreys, C.J., Smith, G.D., Oliver, R.A.: Atom probe tomography assessment of the impact of electron beam exposure on \(\text{ In }_{x}\text{ Ga }_{1-x}\text{ N/GaN }\) quantum wells. Appl. Phys. Lett. 99(2), 021906 (2011)CrossRefGoogle Scholar
  18. 18.
    Galtrey, M.J., Oliver, R.A., Kappers, M.J., Humphreys, C.J., Clifton, P.H., Larson, D., Saxey, D.W., Cerezo, A.: Three-dimensional atom probe analysis of green- and blue-emitting \(\text{ In }_{x}\text{ Ga }_{1-x}\text{ N/GaN }\) multiple quantum well structures. J. Appl. Phys. 104(1), 013524 (2008)CrossRefGoogle Scholar
  19. 19.
    Galtrey, M.J., Oliver, R.A., Kappers, M.J., Humphreys, C.J., Stokes, D.J., Clifton, P.H., Cerezo, A.: Three-dimensional atom probe studies of an \(\text{ In }_{x}\text{ Ga }_{1-x}\text{ N/GaN }\) multiple quantum well structure: assessment of possible indium clustering. Appl. Phys. Lett. 90(6), 061903 (2007)CrossRefGoogle Scholar
  20. 20.
    Watson-Parris, D., Godfrey, M.J., Dawson, P., Oliver, R.A., Galtrey, M.J., Kappers, M.J., Humphreys, C.J.: Carrier localization mechanisms in \(\text{ In }_{x}\text{ Ga }_{1-x}\text{ N/GaN }\) quantum wells. Phys. Rev. B 83, 115321 (2011)CrossRefGoogle Scholar
  21. 21.
    Caro, M.A., Schulz, S., O’Reilly, E.P.: Theory of local electric polarization and its relation to internal strain: impact on polarization potential and electronic properties of group-III nitrides. Phys. Rev. B 88, 214103 (2013)CrossRefGoogle Scholar
  22. 22.
    Nath, D.N., Yang, Z.C., Lee, C.-Y., Park, P.S., Wu, Y.-R., Rajan, S.: Unipolar vertical transport in GaN/AlGaN/GaN heterostructures. Appl. Phys. Lett. 103(2), 022102 (2013)Google Scholar
  23. 23.
    Kuo, Y.-K., Tsai, M.-C., Yen, S.-H., Hsu, T.-C., Shen, Y.-J.: Effect of p-type last barrier on efficiency droop of blue InGaN light-emitting diodes. IEEE J. Quantum Electron. 46(8), 1214–1220 (2010)CrossRefGoogle Scholar
  24. 24.
    Chen, J.-R., Wu, Y.-C., Ling, S.-C., Ko, T.-S., Lu, T.-C., Kuo, H.-C., Kuo, Y.-K., Wang, S.-C.: Investigation of wavelength-dependent efficiency droop in InGaN light-emitting diodes. Appl. Phys. B 98(4), 779–789 (2010)CrossRefGoogle Scholar
  25. 25.
    Browne, D.A., Mazumder, B., Wu, Y.-R., Speck, J.S.: Investigation of electron transport through InGaN quantum well structures. In: 14th Electronic Materials Conference, Santa Barbara, June 25–27 (2014)Google Scholar
  26. 26.
    Browne, D.A., Mazumder, B., Wu, Y.-R., Speck, J.S.: Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by \(\text{ NH }_{3}\) molecular beam epitaxy, J. Appl. Phys. (2015, in press)Google Scholar
  27. 27.
    Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Method Eng. 79, 1309V1331 (2009)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Sabathil, M., Laubsch, A., Linder, N.: Self-consistent modeling of resonant PL in InGaN SQW LED-structure. Proc. SPIE 6486, 64860V-9 (2007)Google Scholar
  29. 29.
    Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)CrossRefGoogle Scholar
  30. 30.
    Chuang, S.L., Chang, C.S.: \(\text{ k }\cdot \text{ p }\) method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491–2504 (1996)CrossRefGoogle Scholar
  31. 31.
    Wu, J.: When group-iii nitrides go infrared: new properties and perspectives. J. Appl. Phys. 106(1), 011101 (2009)CrossRefGoogle Scholar
  32. 32.
    Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stuzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., Eastman, L.F.: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. 14, 3399–3434 (2002)Google Scholar
  33. 33.
    Li, C.-K., Yang, H.-C., Hsu, T.-C., Shen, Y.-J., Liu, A.-S., Wu, Y.-R.: Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes. J. Appl. Phys. 113(18), 183104 (2013)CrossRefGoogle Scholar
  34. 34.
    Chen, L.-Y., Li, C.-K., Tan, J.-Y., Huang, L.-C., Wu, Y.-R., Huang, J.J.: On the efficiency decrease of the GaN light-emitting nanorod arrays. IEEE J. Quantum Electron. 49(2), 224–231 (2013)CrossRefGoogle Scholar
  35. 35.
    Li, C.-K., Yeh, P.-C., Yu, J.-W., Peng, L.-H., Wu, Y.-R.: Scaling performance of \(\text{ Ga }_{2}\text{ O }_{3}/\text{ GaN }\) nanowire field effect transistor. J. Appl. Phys. 114(16), 163706 (2013)CrossRefGoogle Scholar
  36. 36.
    Lin, Y.-Y., Chuang, R., Chang, S.-J., Li, S., Jiao, Z.-Y., Ko, T., Hon, S., Liu, C.: GaN-based LEDs with a chirped multiquantum barrier structure. IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012)CrossRefGoogle Scholar
  37. 37.
    Piprek, J., Simon Li, Z.M.: Origin of InGaN light-emitting diode efficiency improvements using chirped AlGaN multi-quantum barriers. Appl. Phys. Lett. 102(2), 023510 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Graduate Institute of Photonics and Optoelectronics and Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations