Journal of Computational Electronics

, Volume 14, Issue 1, pp 94–106 | Cite as

Suppressed and enhanced shot noise in one dimensional field-effect transistors

  • Giuseppe Iannaccone
  • Alessandro Betti
  • Gianluca Fiori


Landauer–Büttiker shot noise formula only considers the impact of Pauli exclusion principle on noise, but not the impact of Coulomb repulsion among carriers. A theory recently derived by the authors is able to include also the impact of Coulomb repulsion, and provides a computational methodology to obtain noise properties on a more complete physical basis. We review recent results from the application of this methodology with the use of in-house developed computational electronics tools. We show that in a one-dimensional FET, electrostatic repulsion among charge carriers in the channel can be responsible for strongly suppressed or enhanced shot noise with respect to the Poissonian Noise, or to the noise level provided by Landauer–Büttiker formula. This is very relevant for device and circuit design, since current semiconductor technology evolution has brought nanoscale FETs very close to the limit of one-dimensional FETs.


One-dimensional transistors Carbon nanotube transistors Shot noise 


  1. 1.
    Landauer, R.: Condensed-matter physics: the noise is the signal. Nature 392, 658–659 (1998)CrossRefGoogle Scholar
  2. 2.
    González, T., González, C., Mateos, J., Pardo, D., Reggiani, L., Bulashenko, O.M., Rubi’, J.M.: Universality of the 1/3 shot-noise suppression factor in nondegenerate diffusive conductors. Phys. Rev. Lett. 80, 2901–2904 (1998)CrossRefGoogle Scholar
  3. 3.
    Sukhorukov, E.V., Loss, D.: Universality of shot noise in multiterminal diffusive conductors. Phys. Rev. Lett. 80, 4959–4962 (1998)CrossRefGoogle Scholar
  4. 4.
    Blanter, Y.M., Büttiker, M.: Shot-noise current-current correlations in multiterminal diffusive conductors. Phys. Rev. B 56, 2127–2136 (1997)CrossRefGoogle Scholar
  5. 5.
    Steinbach, A.H., Martinis, J.M., Devoret, M.H.: Observation of hot-electron shot noise in a metallic resistor. Phys. Rev. Lett. 76, 3806–3809 (1996)CrossRefGoogle Scholar
  6. 6.
    Schoelkopf, R.J., Burke, P.J., Kozhevnikov, A.A., Prober, D.E., Rooks, M.J.: Frequency dependence of shot noise in a diffusive mesoscopic conductor. Phys. Rev. Lett. 78, 3370–3373 (1997)CrossRefGoogle Scholar
  7. 7.
    Iannaccone, G.: Analytical and numerical investigation of noise in nanoscale ballistic field effect transistors. J. Comput. Electron. 3, 199–202 (2004)CrossRefGoogle Scholar
  8. 8.
    Iannaccone, G., Crupi, F., Neri, B.: Suppressed shot noise in trap-assisted tunneling of metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 77, 2876–2878 (2000)CrossRefGoogle Scholar
  9. 9.
    Iannaccone, G., Crupi, F., Neri, B., Lombardo, S.: Theory and experiment of suppressed shot noise in stress-induced leakage currents. IEEE Trans. Electron Dev. 50, 1363–1369 (2003)CrossRefGoogle Scholar
  10. 10.
    Carlo, L.D., Williams, J.R., Zhang, Y., McClure, D.T., Marcus, C.M.: Shot noise in graphene. Phys. Rev. Lett. 100, 156801 (2008)CrossRefGoogle Scholar
  11. 11.
    Herrmann, L.G., Delattre, T., Morfin, P., Berroir, J.M., Placais, B., Glattli, D.C., Kontos, T.: Shot noise in fabry-perot interferometers based on carbon nanotubes. Phys. Rev. Lett. 99, 156804 (2007)CrossRefGoogle Scholar
  12. 12.
    Betti, A., Fiori, G., Iannaccone, G.: Shot noise in quasi one-dimensional FETs. IEDM Technol. Digest 185–188 (2008)Google Scholar
  13. 13.
    Betti, A., Fiori, G., Iannaccone, G.: Shot noise suppression in quasi one-dimensional field effect transistors. IEEE Trans. Electron Dev. 56, 2137–2143 (2009)CrossRefGoogle Scholar
  14. 14.
    Betti, A., Fiori, G., Iannaccone, G.: Statistical theory of shot noise in quasi-1D field effect transistors in the presence of electron–electron interaction. Phys. Rev. B 81, 035329 (2010)CrossRefGoogle Scholar
  15. 15.
    Iannaccone, G., Lombardi, G., Macucci, M., Pellegrini, B.: Enhanced shot noise in resonant tunneling: theory end experiment. Phys. Rev. Lett. 80, 1054 (1998)CrossRefGoogle Scholar
  16. 16.
    Iannaccone, G., Macucci, M., Pellegrini, B.: Shot noise in resonant-tunneling structures. Phys. Rev. B 55, 4539–4550 (1997)CrossRefGoogle Scholar
  17. 17.
    Pedersen, M.B.M.H., van Langen, S.A., Büttiker, M.: Charge fluctuations in quantum point contacts and chaotic cavities in the presence of transport. Phys. Rev. B 57, 1838 (1998)CrossRefGoogle Scholar
  18. 18.
    Büttiker, A.P.M., Thomas, H., Prêtre, A.: Dynamic conductance and the scattering matrix of small conductors. Phys. Lett. A 180, 364 (1993)CrossRefGoogle Scholar
  19. 19.
    Betti, A., Fiori, G., Iannaccone, G.: Shot noise analysis in quasi one-dimensional field effect transistors. Int. Conf. Noise Fluct. 1129, 581–584 (2009)Google Scholar
  20. 20.
    Betti, A., Fiori, G., Iannaccone, G.: Enhanced shot noise in carbon nanotube field-effect transistors. Appl. Phys. Lett. 95, 252108 (2009)CrossRefGoogle Scholar
  21. 21.
    Betti, A., Fiori, G., Iannaccone, G.: Enhanced shot noise in carbon nanotube FETs due to electron–hole interaction. IWCE Technol. Dig. 1–4 (2010)Google Scholar
  22. 22.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  23. 23.
    Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223 (1957)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sai, N., Zwolak, M., Vignale, G., Di Ventra, M.: Dynamical corrections to the DFT–LDA electron conductance in nanoscale systems. Phys. Rev. Lett. 94, 186810 (2005)CrossRefGoogle Scholar
  25. 25.
    Vignale, G., Di Ventra, M.: Incompleteness of the Landauer formula for electronic transport. Phys. Rev. B 79, 014201 (2009)CrossRefGoogle Scholar
  26. 26.
    Büttiker, M.: Scattering theory of current and intensity noise correlations in conductors and wave guides. Phys. Rev. B 46, 12485–12507 (1992)CrossRefGoogle Scholar
  27. 27.
    Code and documentation can be found at the url:
  28. 28.
    Fiori, G., Iannaccone, G.: Coupled mode space approach for the simulation of realistic carbon nanotube field-effect transistors. IEEE Trans. Nanotechnol. 6, 475 (2007)CrossRefGoogle Scholar
  29. 29.
    Guo, J., Datta, S., Lundstrom, M., Anantam, M.P.: Towards multi-scale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2, 257–276 (2004)CrossRefGoogle Scholar
  30. 30.
    Fiori, G., Iannaccone, G.: Three-dimensional simulation of one-dimensional transport in silicon nanowire transistors. IEEE Trans. Nanotechnol. 6, 524–529 (2007)CrossRefGoogle Scholar
  31. 31.
    Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96, 2192–2203 (2004)CrossRefGoogle Scholar
  32. 32.
    Fiori, G., Iannaccone, G., Klimeck, G.: A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry. IEEE Trans. Electron Dev. 53, 1782–1788 (2006)CrossRefGoogle Scholar
  33. 33.
    Park, H.H., Jin, S., Park, Y.J., Min, H.S.: Quantum simulation of noise in silicon nanowire transistors. J. Appl. Phys. 104, 023708 (2008)CrossRefGoogle Scholar
  34. 34.
    Gramespacher, T., Büttiker, M.: Local densities, distribution functions, and wave-function correlations for spatially resolved shot noise at nanocontacts. Phys. Rev. B 60, 2375–2390 (1999)CrossRefGoogle Scholar
  35. 35.
    Büttiker, M.: Flux-sensitive correlations of mutually incoherent quantum channels. Phys. Rev. Lett. 68, 843–846 (1992)CrossRefGoogle Scholar
  36. 36.
    Park, H.H., Jin, S., Park, Y.J., Min, H.S.: Quantum simulation of noise in silicon nanowire transistors with electron–phonon interactions. J. Appl. Phys. 105, 023712 (2009)CrossRefGoogle Scholar
  37. 37.
    van der Ziel, A.: Noise in Solid State Device and Circuits, pp. 75–78. Wiley, New York (1986)Google Scholar
  38. 38.
    Abidi, A.A.: High-frequency noise measurements on FET’s with small dimensions. IEEE Trans. Electron Dev. 33, 1801–1805 (1986)CrossRefGoogle Scholar
  39. 39.
    Navid, R., Dutton, R.W.: The physical phenomena responsible for excess noise in short-channel MOS devices. IEDM Technol. Dig. 75–78 (2002)Google Scholar
  40. 40.
    Han, K., Shin, H., Lee, K.: Analytical drain thermal noise current model valid for deep submicron MOSFETs. IEEE Trans. Electron Dev. 51, 261–269 (2004)CrossRefGoogle Scholar
  41. 41.
    Bulashenko, O.M., Rubí, J.M.: Shot-noise suppression by Fermi and Coulomb correlations in ballistic conductors. Phys. Rev. B 64, 045307 (2001)CrossRefGoogle Scholar
  42. 42.
    Martin, T., Landauer, R.: Wave-packet approach to noise in multichannel mesoscopic systems. Phys. Rev. B 45, 1742–1755 (1992)CrossRefGoogle Scholar
  43. 43.
    Döring, M.R., Hangleiter, A., Klötzer, N.: Electron–hole correlation effects in generation–recombination noise. Phys. Rev. B 45, 1163–1171 (1992)CrossRefGoogle Scholar
  44. 44.
    Bardeen, J.: Tunneling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961)CrossRefGoogle Scholar
  45. 45.
    Iannaccone, G., Pellegrini, B.: Unified approach to electron transport in double-barrier structures. Phys. Rev. B 52, 17406–17412 (1995)CrossRefGoogle Scholar
  46. 46.
    Reittu, H.J.: Fermi’s golden rule and Bardeen’s tunneling theory. Am. J. Phys. 63, 940–944 (1995)CrossRefGoogle Scholar
  47. 47.
    Ahmadi, M.T., Ismail, R., Tan, M.L.P., Arora, V.K.: The ultimate ballistic drift velocity in carbon nanotubes. J. Nanomater. 2008, 769250 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Giuseppe Iannaccone
    • 1
  • Alessandro Betti
    • 1
  • Gianluca Fiori
    • 1
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità di PisaPisaItaly

Personalised recommendations