Journal of Computational Electronics

, Volume 14, Issue 1, pp 257–261 | Cite as

Negative differential conductance in chromium based nano rings

  • S. Nikipar
  • A. Phirouznia


The electric current of \(Cr_8\) and \(Cr_7Ni\) molecular rings with two semi-infinite, \(Au\) leads have been investigated. We have performed numerical calculations using the non-equilibrium Green’s function method combined with the density functional theory. Then the electric current under a given applied bias voltage has been obtained in a two terminal molecular circuit system. Transport characteristics of these molecular-based quantum rings and coherent transport features of the system have been studied. It was shown that negative differential conductance regime arises, in several ranges of the bias voltage.


Molecular rings Quantum transport  Non-equilibrium Green’s function DFT 



We gratefully acknowledge Molecular Simulation Lab. (MSL) of Azarbaijan Shahid Madani University for providing high performance computational support.


  1. 1.
    Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)CrossRefGoogle Scholar
  2. 2.
    Nuss, M., von der Linden, M., Arrigoni, E.: Effects of electronic correlations and magnetic field on a molecular ring out of equilibrium. Phys. Rev. B 89, 55139-1-15 (2014)Google Scholar
  3. 3.
    Parida, Prakash, Pati, Swapan K., Painelli, Anna: Negative differential conductance in nanojunctions: a current constrained approach. Phys. Rev. B 83, 165404–165410 (2011)CrossRefGoogle Scholar
  4. 4.
    van Slageren, : Magnetic anisotropy of the antiferromagnetic ring [Cr8F8Piv16]. Chemistry 8, 277–285 (2002)CrossRefGoogle Scholar
  5. 5.
    Carretta, S., et al.: Microscopic spin Hamiltonian of a Cr8 antiferromagnetic ring from inelastic neutron scattering. Phys. Rev. B 67, 094405–094413 (2003)CrossRefGoogle Scholar
  6. 6.
    Christou, G., Gatteschi, D., Hendrickson, D.N., Sessoli, R.: Single-molecule magnets. MRS Bull. 25, 66–71 (2000)CrossRefGoogle Scholar
  7. 7.
    Gatteschi, D., Sessoli, R., Villain, J.: Molecular Nanomagnets. Oxford University Press, Oxford (2006)Google Scholar
  8. 8.
    Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)CrossRefGoogle Scholar
  9. 9.
    Sanvito, S., Lambert, C.J., Jefferson, J.H., Bratkovsky, A.M.: General Green’s-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers. Phys. Rev. B 59, 11936–11948 (1999)CrossRefGoogle Scholar
  10. 10.
    Friedman, J.R., Sarachik, M.P., Tejada, J., Ziolo, R.: Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996)CrossRefGoogle Scholar
  11. 11.
    Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R., Barbara, B.: Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996)CrossRefGoogle Scholar
  12. 12.
    Wernsdorfer, W., Sessoli, R.: Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999)CrossRefGoogle Scholar
  13. 13.
    Caneschi, A., Gatteschi, D., Sangregorio, C., Sessoli, R., Sorace, L., Cornia, A., Novak, M.A., Paulsen, C., Wernsdorfer, W.: The molecularapproach to nanoscale magnetism. J. Magn. Magn. Mater. 200, 182–201 (1999)CrossRefGoogle Scholar
  14. 14.
    Affronte, M., et al.: Single molecule magnets for quantum computation. J. Phys. D 40, 2999–3004 (2007)CrossRefGoogle Scholar
  15. 15.
    Liviotti, E., et al.: S-mixing contributions to the high-order anisotropy terms in the effective spin Hamiltonian for magnetic clusters. J. Chem. Phys. 117, 3361–3368 (2002)CrossRefGoogle Scholar
  16. 16.
    Bellini, V., Olivieri, A., Manghi, F.: Density-functional study of the Cr8 antiferromagnetic ring. Phys. Rev. B 73, 184431–184438 (2006)CrossRefGoogle Scholar
  17. 17.
    Kokalj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Comput. Mater. Sci. 28, 155–168 (2003). Code available from
  18. 18.
    Tomecka, D.M., Bellini, V.: Ab initio study on a chain model of the Cr8 molecular magnet. Phys. Rev. B 77, 224401–224408 (2008)CrossRefGoogle Scholar
  19. 19.
    OpenMx code freely. Accessed 28 Nov 2014
  20. 20.
    Ozaki, Taisuke, Nishio, Kengo, Kino, Hiori: Efficient implementation of the nonequilibrium Green function method for electronic transport calculations. Phys. Rev. B 81, 035116–035135 (2010)CrossRefGoogle Scholar
  21. 21.
    Gonze, X., et al.: First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002)CrossRefGoogle Scholar
  22. 22.
    Cambridge Crystallographic Data Centre, Refcode: ADIZOC.
  23. 23.
    Ghirri, A., et al.: Deposition of functionalized Cr7Ni molecular rings on graphite from the liquid phase. Adv. Funct. Mater. 20, 1552–1560 (2010). Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 759426–759428CrossRefGoogle Scholar
  24. 24.
    Thielmann, A., Hettler, M.H., König, J., Schön, G.: Super-Poissonian noise, negative differential conductance, and relaxation effects in transport through molecules, quantum dots, and nanotubes. Phys. Rev. B 71, 045341–045349 (2005)CrossRefGoogle Scholar
  25. 25.
    Kießlich, G., Wacker, A., Schöll, E.: Shot noise of coupled semiconductor quantum dots. Phys. Rev. B 68, 125320–125328 (2003)CrossRefGoogle Scholar
  26. 26.
    Djuric, I., Dong, B., Cui, H.L.: Theoretical investigations for shot noise in correlated resonant tunneling through a quantum coupled system. J. Appl. Phys. 99, 063710–063722 (2006)CrossRefGoogle Scholar
  27. 27.
    Bogani, Lapo, Wernsdorfer, WoLfgang: Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008)CrossRefGoogle Scholar
  28. 28.
    Stern, A.: Berry’s phase, motive forces, and mesoscopic conductivity. Phys. Rev. Lett. 68, 1022–1025 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsDresden University of TechnologyDresdenGermany
  2. 2.Department of PhysicsAzarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Condensed Matter Computational Research LabAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations