Journal of Computational Electronics

, Volume 14, Issue 1, pp 203–208 | Cite as

The role of measurement time on the universal crossover from \(1/f\) to non-\(1/f\) noise behavior

Article

Abstract

Noise of stochastic processes whose spectral density scales at low frequencies, \(f\), as \(1/f\) appears in such diverse systems that it is considered universal. However, there have been a small number of instances from completely unrelated fields, e.g., the fluctuations of the human heartbeat or vortices in superconductors, in which spectral densities have been observed to cross over from a \(1/f\) to a non-\(1/f\) behavior at even lower frequencies. Here, we show that such crossover must be universal, and can be accounted for by the memory of initial conditions and the relaxation processes present in any physical system. When the smallest frequency allowed by the experimental observation time, \(\omega _{obs}\), is larger than the smallest relaxation frequency, \(\varOmega _{min}\), a \(1/f\) spectral density is obtained. Conversely, when \(\omega _{obs}<\varOmega _{min}\) we predict that the spectral density of any stochastic process should exhibit a crossover from \(1/f\) to a different, integrable functional form provided there is enough time for experimental observations. This crossover also provides a convenient tool to measure the lowest relaxation frequency of a physical system.

Keywords

Fluctuation phenomena Relaxation processes Stochastic models Statistical physics 

Notes

Acknowledgments

We thank Guy Cohen and Sebastiano Peotta for a critical reading of the manuscript. S.D. acknowledges partial support from the International Fulbright Science and Technology Award. M.D. acknowledges support from the Center for Magnetic Recording Research at UCSD.

References

  1. 1.
    Agu, M.: A nonstationary time-series having \(1/f\)-type power spectrum. J. Phys. Soc. Jpn. 40(5), 1510–1511 (1976)CrossRefGoogle Scholar
  2. 2.
    Anderson, P.W.: From the top down. Nature 383(6603), 772–773 (1996)CrossRefGoogle Scholar
  3. 3.
    Anton, S.M., Nugroho, C.D., Birenbaum, J.S., O’Kelley, S.R., Orlyanchik, V., Dove, A.F., Olson, G.A., Yoscovits, Z.R., Eckstein, J.N., Harlingen, D.J.V., Clarke, J.: Low-frequency critical current noise in josephson junctions induced by temperature fluctuations. Appl. Phys. Lett. 101(9), 092601 (2012)CrossRefGoogle Scholar
  4. 4.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/ f noise. Phys. Rev. Lett. 59, 381–384 (1987)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bonanno, G., Lillo, F., Mantegna, R.N.: Dynamics of the number of trades of financial securities. Physica A 280, 136–141 (2000)CrossRefGoogle Scholar
  7. 7.
    Clarke, J., Hsiang, T.Y.: Low-frequency noise in tin and lead films at the superconducting transition. Phys. Rev. B 13, 4790–4800 (1976)CrossRefGoogle Scholar
  8. 8.
    Clem, J.R.: Flux-flow noise in superconductors. Phys. Rep. 75(1), 1–55 (1981)CrossRefGoogle Scholar
  9. 9.
    Dahmen, K.A., Ben-Zion, Y., Uhl, J.T.: A simple analytic theory for the statistics of avalanches in sheared granular materials. Nat. Phys. 7(7), 554–557 (2011)CrossRefGoogle Scholar
  10. 10.
    Derksen, H.E., Verveen, A.A.: Fluctuations of resting neural membrane potential. Science 151(3716), 1388–1389 (1966)CrossRefGoogle Scholar
  11. 11.
    Di Ventra, M.: Electrical Transport in Nanoscale Systems. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  12. 12.
    Dutta, P., Horn, P.M.: Low-frequency fluctuations in solids: \(1/f\) noise. Rev. Mod. Phys. 53, 497–516 (1981)CrossRefGoogle Scholar
  13. 13.
    Falci, G., La Cognata, A., Berritta, M., D’Arrigo, A., Paladino, E., Spagnolo, B.: Design of a lambda system for population transfer in superconducting nanocircuits. Phys. Rev. B 87, 214515 (2013)CrossRefGoogle Scholar
  14. 14.
    Fraedrich, K., Blender, R., Zhu, X.: Continuum climate variability: Long-term memory, scaling, and 1/f-noise. Int. J. Mod. Phys. B 23(28n29), 5403–5416 (2009)CrossRefGoogle Scholar
  15. 15.
    Frigg, R.: Self-organised criticality—what it is and what it isn’t. Stud. Hist. Philos. Sci. Part A 34(3), 613–632 (2003)CrossRefGoogle Scholar
  16. 16.
    Holliger, K.: Fault scaling and 1/f noise scaling of seismic velocity fluctuations in the upper crystalline crust. Geology 24(12), 1103–1106 (1996)CrossRefGoogle Scholar
  17. 17.
    Johnson, J.B.: The schottky effect in low frequency circuits. Phys. Rev. 26(1), 71–85 (1925)CrossRefGoogle Scholar
  18. 18.
    Keshner, M.: 1/f noise. Proc. IEEE 70(3), 212–218 (1982)CrossRefGoogle Scholar
  19. 19.
    La Cognata, A., Caldara, P., Valenti, D., Spagnolo, B., D’Arrigo, A., Paladino, E., Falci, G.: Effect of low-frequency noise on adiabatic passage in a superconducting nanocircuit. Int. J. Quantum Inf. 9, 1–15 (2011)CrossRefGoogle Scholar
  20. 20.
    Lyubarskii, Y.E.: Flicker noise in accretion discs. Mon. Not. R. Astron. Soc. 292(3), 679–685 (1997)CrossRefGoogle Scholar
  21. 21.
    Mandelbrot, B.: Some noises with spectrum, a bridge between direct current and white noise. IEEE Trans. Inf. Theory 13(2), 289–298 (1967)CrossRefMATHGoogle Scholar
  22. 22.
    Mao, A., Harrison, C.G.A., Dixon, T.H.: Noise in gps coordinate time series. J. Geophys. Res. 104(B2), 2797–2816 (1999)CrossRefGoogle Scholar
  23. 23.
    Milotti, E.: 1/f noise: a pedagogical review. arXiv:physics/0204033 [physics.class-ph] (2002)
  24. 24.
    Neumcke, B.: 1/f noise in membranes. Biophys. Struct. Mech. 4(3), 179–199 (1978)CrossRefGoogle Scholar
  25. 25.
    Niemann, M., Kantz, H., Barkai, E.: Fluctuations of 1/\(f\) noise and the low-frequency cutoff paradox. Phys. Rev. Lett. 110, 140603 (2013)CrossRefGoogle Scholar
  26. 26.
    Paladino, E., Galperin, Y.M., Falci, G., Altshuler, B.L.: 1/\(f\) noise: implications for solid-state quantum information. Rev. Mod. Phys. 86, 361–418 (2014)CrossRefGoogle Scholar
  27. 27.
    Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: an interdisciplinary. J. Nonlinear Sci. 5(1), 82–87 (1995)Google Scholar
  28. 28.
    Press, W.H.: Flicker noises in astronomy and elsewhere. Comments Astrophys. 7, 103–119 (1978)Google Scholar
  29. 29.
    Refregier, P., Ocio, M., Bouchiat, H.: Equilibrium magnetic fluctuations in spin glasses: temperature dependence and deviations from 1/ f behaviour. Europhys. Lett. 3(4), 503–510 (1987)CrossRefGoogle Scholar
  30. 30.
    Sadegh, S., Barkai, E., Krapf, D.: Critical exponents describing non-stationarity in 1/\(f\) noise for intermittent quantum dots. arXiv:1312.3561v2 [cond-mat.stat-mech] (2014)
  31. 31.
    Schottky, W.: Über spontane stromschwankungen in verschiedenen elektrizitätsleitern. Annalen der Physik 362(23), 541–567 (1918)CrossRefGoogle Scholar
  32. 32.
    Schottky, W.: Zur berechnung und beurteilung des schroteffektes. Annalen der Physik 373(10), 157–176 (1922)CrossRefGoogle Scholar
  33. 33.
    Schottky, W.: Small-shot effect and flicker effect. Phys. Rev. 28(1), 74–103 (1926)CrossRefGoogle Scholar
  34. 34.
    Van Der Ziel, A.: On the noise spectra of semi-conductor noise and of flicker effect. Physica 16(4), 359–372 (1950)CrossRefGoogle Scholar
  35. 35.
    Van Gurp, G.J.: Flux-transport noise in type-ii superconductors. Phys. Rev. 166, 436–446 (1968)CrossRefGoogle Scholar
  36. 36.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North Holland, Amsterdam (2007)Google Scholar
  37. 37.
    Verveen, A., Derksen, H.: Fluctuations in membrane potential of axons and the problem of coding. Kybernetik 2(4), 152–160 (1965)Google Scholar
  38. 38.
    Verveen, A.A., Derksen, H.E.: Fluctuation phenomena in nerve membrane. Proc. IEEE 56(6), 906–916 (1968)CrossRefGoogle Scholar
  39. 39.
    Voss, R.F., Clarke, J.: ‘1/\(f\) noise’ in music and speech. Nature 258, 317–318 (1975)CrossRefGoogle Scholar
  40. 40.
    Voss, R.F., Clarke, J.: Flicker \((\frac{1}{f})\) noise: equilibrium temperature and resistance fluctuations. Phys. Rev. B 13, 556–573 (1976)CrossRefGoogle Scholar
  41. 41.
    Voss, R.F., Clarke, J.: “1/f noise” in music: Music from 1/f noise. J. Acoust. Soc. Am. 63(1), 258–263 (1978)CrossRefGoogle Scholar
  42. 42.
    Weissman, M.B.: \(\frac{1}{f}\) noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988)CrossRefGoogle Scholar
  43. 43.
    Wunsch, C.: Bermuda sea level in relation to tides, weather, and baroclinic fluctuations. Rev. Geophys. 10(1), 1–49 (1972)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Wunsch, C.: The spectrum from two years to two minutes of temperature fluctuations in the main thermocline at bermuda. Deep Sea Res. Oceanogr. Abstr. 19(8), 577–593 (1972)CrossRefGoogle Scholar
  45. 45.
    Yano, Ji, Blender, R., Zhang, C., Fraedrich, K.: 1/f noise and pulse-like events in the tropical atmospheric surface variabilities. Quart. J. R. Meteorol. Soc. 130(600), 1697–1721 (2004)CrossRefGoogle Scholar
  46. 46.
    Yano, J.I., Fraedrich, K., Blender, R.: Tropical convective variability as 1/f noise. J. Clim. 14(17), 3608–3616 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations