Journal of Computational Electronics

, Volume 14, Issue 1, pp 151–162 | Cite as

Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition

  • Paul Ellinghaus
  • Josef Weinbub
  • Mihail Nedjalkov
  • Siegfried Selberherr
  • Ivan Dimov
Article

Abstract

The Wigner Monte Carlo method, based on the generation and annihilation of particles, has emerged as a promising approach to treat transient problems of quantum electron transport in nanostructures. Tackling these simulations in multiple spatial dimensions demands a parallelized approach to facilitate a practical application of the method in order to investigate realistic problems, due to the otherwise exorbitant execution-times and memory requirements. Because of the annihilation step, a straight-forward parallelization of the Wigner Monte Carlo code is not possible, since sub-ensembles of particles can not be treated independently. Moreover, the large memory requirements of the annihilation procedure presents challenges when working in a distributed-memory setting. A solution to this problem is presented here with a parallelization approach using a spatial domain decomposition, implemented using the message passing interface. The presented benchmark results, based on standard one-dimensional examples, exhibit a good efficiency in the scalability of not only speed, but also memory consumption, which is paramount for the simulation of realistic devices.

Keywords

Wigner Monte Carlo Message passing interface  Domain decomposition Parallel  Memory-distributed 

References

  1. 1.
    Amoroso, S., Gerrer, L., Asenov, A., Sellier, J., Dimov, I., Nedjalkov, M.,Selberherr, S.: Quantum insights in gate oxide charge-trapping dynamics in nanoscale MOSFETs. In: Simulation of Semiconductor Processes and Devices (SISPAD), 2013 International Conference on, pp. 25–28 (2013). doi:10.1109/SISPAD.2013.6650565
  2. 2.
    Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and Engineers. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Nedjalkov, M., Book chapter: Wigner transport in presence of phonons: particle models of the electron kinetics, in from nanostructures to nanosensing applications. In: A. Paoletti, A. D’Amico, G. Ballestrino (eds.) Proceedings of the International School of Physics ”Enrico Fermi”, vol. 160, pp. 55–103. IOS Press, Amsterdam (2005). doi:10.3254/1-58603-527-4-55
  5. 5.
    Querlioz, D., Dollfus, P.: The Wigner Monte Carlo Method for Nanoelectronic Devices—A Particle Description of Quantum Transport and Decoherence. ISTE-Wiley, London (2010)MATHGoogle Scholar
  6. 6.
    Nedjalkov, M., Vasileska, D., Ferry, D.K., Jacoboni, C., Ringhofer, C., Dimov, I., Palankovski, V.: Wigner transport models of the electron-phonon kinetics in quantum wires. Phys. Rev. B 74, 035311 (2006). doi:10.1103/PhysRevB.74.035311 CrossRefGoogle Scholar
  7. 7.
    Nedjalkov, M., Querlioz, D., Dollfus, P., Kosina, H. Review chapter: Wigner function approach. In: D. Vasileska, S. Goodnick (eds.) Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, pp. 289 - 358. Springer-Verlag, New York (2011), ISBN: 978-1-4419-8839-3. doi:10.1007/978-1-4419-8840-9_5. Invited
  8. 8.
    Tatarskii, V.I.: The Wigner representation of quantum mechanics. Sov. Phys. Usp. 26, 311 (1983). doi:10.1070/PU1983v026n04ABEH004345 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ravaioli, U., Osman, M.A., Ptz, W., Kluksdahl, N., Ferry, D.K.: Investigation of ballistic transport through resonant-tunnelling quantum wells using Wigner function approach, Physica B+C 134(13), 36 (1985). doi:10.1016/0378-4363(85)90317-1
  10. 10.
    Frensley, W.: Wigner-function model of resonant-tunneling semiconductor device. Phys. Rev. B 36(3), 1570 (1987). doi:10.1103/PhysRevB.36.1570 CrossRefGoogle Scholar
  11. 11.
    Kluksdahl, N.C., Poetz, W., Ravaiolli, U., Ferry, D.K.: Wigner function study of a double quantum well resonant-tunneling diode. Superlattices Microstruct. 3, 41 (1987)CrossRefGoogle Scholar
  12. 12.
    Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Self-consistent study of resonant-tunneling diode. Phys. Rev. B 39, 7720 (1989). doi:10.1103/PhysRevB.39.7720 CrossRefGoogle Scholar
  13. 13.
    Frensley, W.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62(3), 745 (1990). doi:10.1103/RevModPhys.62.745 CrossRefGoogle Scholar
  14. 14.
    Rupp, K., Grasser, K.T., Jüngel, A.: On the feasibility of spherical harmonics expansions of the Boltzmann transport equation for three-dimensional device geometries. In: Proceedings of the IEEE International Electron Devices Meeting (IEDM) (2011). doi:10.1109/IEDM.2011.6131667
  15. 15.
    Peikert, V., Schenk, A.: A wavelet method to solve high-dimensional transport equations in semiconductor devices. In: 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 299–302 (2011). doi:10.1109/SISPAD.2011.6035029
  16. 16.
    Vitanov, P., Nedjalkov, M., Jacoboni, C., Rossi, F., Abramo, A.: Unified Monte Carlo approach to the Boltzmann and Wigner equations. In: Sendov, Bl, Dimov, I. (eds.) Advances in Parallel Algorithms, pp. 117–128. IOS Press, Amsterdam (1994)Google Scholar
  17. 17.
    Rossi, F., Jacoboni, C., Nedjalkov, M.: A Monte Carlo solution of the Wigner transport equation. Semicond. Sci. Technol. 9, 934 (1994). doi:10.1088/0268-1242/9/5S/143 CrossRefGoogle Scholar
  18. 18.
    Sala, R., Brouard, S., Muga, J.G.: Wigner trajectories and Liouvilles theorem. J. Chem. Phys. 99(4), 2708 (1993). doi:10.1063/1.465232 CrossRefGoogle Scholar
  19. 19.
    Bordone, P., Bertoni, A., Brunetti, R., Jacoboni, C.: Monte Carlo simulation of quantum electron transport based on Wigner paths. 3rd IMACS Seminar on Monte Carlo Methods. Math. Comput. Simulat. 62(36), 307 (2003). doi:10.1016/S0378-4754(02)00241-0
  20. 20.
    Shifren, L., Ferry, D.: A wigner function based ensemble monte carlo approach for accurate incorporation of quantum effects in device simulation. J. Comput. Electron. 1(1–2), 55 (2002). doi:10.1023/A:1020711726836 CrossRefGoogle Scholar
  21. 21.
    Shifren, L., Ringhofer, C., Ferry, D.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron. Devices 50(3), 769 (2003). doi:10.1109/TED.2003.809434 CrossRefGoogle Scholar
  22. 22.
    Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner–Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004). doi:10.1103/PhysRevB.70.115319 CrossRefGoogle Scholar
  23. 23.
    Nedjalkov, M., Schwaha, P., Selberherr, S., Sellier, J.M., Vasileska, D.: Wigner quasi-particle attributes—an asymptotic perspective. Appl. Phys. Lett. 102(16), 163113 (2013). doi:10.1063/1.4802931 CrossRefGoogle Scholar
  24. 24.
    Nedjalkov, M., Vasileska, D.: Semi-discrete 2D Wigner-particle approach. J. Comput. Electron. 7(3), 222 (2008). doi:10.1007/s10825-008-0197-3 CrossRefGoogle Scholar
  25. 25.
    Ellinghaus, P., Nedjalkov, M., Selberherr, S.: Optimized particle regeneration scheme for the Wigner Monte Carlo method. In: Abstracts of the Eighth International Conference on Numerical Methods and Applications (NMA) (2014)Google Scholar
  26. 26.
    Ellinghaus, P., Nedjalkov, M., Selberherr, S.: The Wigner Monte Carlo method for accurate semiconductor device simulation. In: 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 113–116 (2014)Google Scholar
  27. 27.
    Los, V., Los, N.: Exact solution of the one-dimensional time-dependent Schrödinger equation with a rectangular well/barrier potential and its applications. Theo. Math. Phys. 177(3), 1706 (2013). doi:10.1007/s11232-013-0128-8 CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Paul Ellinghaus
    • 1
  • Josef Weinbub
    • 1
  • Mihail Nedjalkov
    • 1
  • Siegfried Selberherr
    • 1
  • Ivan Dimov
    • 2
  1. 1.Institute for MicroelectronicsViennaAustria
  2. 2.IICTBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations