Journal of Computational Electronics

, Volume 13, Issue 4, pp 877–884 | Cite as

Accelerated redistancing for level set-based process simulations with the fast iterative method

  • Josef WeinbubEmail author
  • Andreas Hössinger


The finite iterative method is compared to an industry-hardened fast marching method for accelerating the redistancing step essential for Level Set-based process simulations in the area of technology computer-aided design. We discuss our implementation of the finite iterative method and depict extensions to improve the method for process simulations, in particular regarding stability. Contrary to previously published work, we investigate real-world structures with varying resolutions, originating from the area of process simulation. The serial execution performance as well as error norms are used to compare our approach with an industry-hardened fast marching method implementation. Parallel scalability is discussed based on a shared-memory OpenMP implementation. We show that our approach of the finite iterative method is an excellent candidate for accelerating Level Set-based process simulations, as it offers considerable performance gains both in serial and parallel execution mode, albeit being inferior with respect to accuracy.


Finite iterative method Redistancing OpenMP Process simulation 



This work has been supported by the Austrian Science Fund (FWF) through the Grant P23296. The authors thank Florian Dang from the Université de Versailles, France for valuable discussions concerning the FIM.


  1. 1.
    Suvorov, V., Hössinger, A., Djurić, Z., Ljepojevic, N.: A novel approach to three-dimensional semiconductor process simulation: application to thermal oxidation. J. Comput. Electron 5(4), 291 (2006). doi: 10.1007/s10825-006-0003-z CrossRefGoogle Scholar
  2. 2.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12 (1988). doi: 10.1016/0021-9991(88)90002-2 CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Ertl, O., Selberherr, S.: A fast level set framework for large three-dimensional topography simulations. Comput. Phys. Commun. 180(8), 1242 (2009). doi: 10.1016/j.cpc.2009.02.002 CrossRefGoogle Scholar
  4. 4.
    Radjenović, B., Radmilović-Radjenović, M.: 3D simulations of the profile evolution during anisotropic wet etching of silicon. Thin Solid Films 517(14), 4233 (2009). doi: 10.1016/j.tsf.2009.02.007 CrossRefGoogle Scholar
  5. 5.
    Filipovic, L., Selberherr, S.: A method for simulating atomic force microscope nanolithography in the level set framework. Microelectron. Eng. 107, 23 (2013). doi: 10.1016/j.mee.2013.02.083 CrossRefGoogle Scholar
  6. 6.
    Montoliu, C., Ferrando, N., Gosálvez, M., Cerdá, J., Colom, R.: Level set implementation for the simulation of anisotropic etching. J. Micromech. Microeng. 23(7), 075017 (2013). doi: 10.1088/0960-1317/23/7/075017 CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Jeong, W.K., Whitaker, R.T.: A fast iterative method for Eikonal equations. SIAM J. Sci. Comput. 30(5), 2512 (2008). doi: 10.1137/060670298 CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Adalsteinsson, D., Sethian, J.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148(1), 2 (1999). doi: 10.1006/jcph.1998.6090 CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Mauch, S.: A fast algorithm for computing the closest point and distance transform. Tech. Rep. 077. California Institute of Technology (2000)Google Scholar
  11. 11.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl Acad. Sci. 93(4), 1591 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Sethian, J.A., Vladimirsky, A.: Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proc. Natl Acad. Sci. 97(11), 5699 (2000). doi: 10.1073/pnas.090060097 CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Zhu, Y.: Adaptively Refined Meshes for Level Set Function. University of British Columbia, Tech. rep (2004)Google Scholar
  14. 14.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1, 269 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Sethian, J.A.: Evolution, level set and fast marching methods for advancing fronts. J. Comput. Phys. 169(2), 503 (2001). doi: 10.1006/jcph.2000.6657 CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Herrmann, M.: A domain decomposition parallelization of the fast marching method, annual research briefs. Center for Turbulence Research, pp. 213–225 (2003)Google Scholar
  17. 17.
    Tugurlan, M.C.: Fast Marching Methods—Parallel Implementation and Analysis. Ph.D. thesis, Louisiana State University (2008)Google Scholar
  18. 18.
    Breuß, M., Cristiani, E., Gwosdek, P., Vogel, O.: An adaptive domain-decomposition technique for parallelization of the fast marching method. Appl. Math. Comput. 218(1), 32 (2011). doi: 10.1016/j.amc.2011.05.041 CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Gunnarsson, J.: Algorithms for representation of 3d regions in radiotherapy planning software. Master’s thesis, Uppsala Universitet (2013)Google Scholar
  20. 20.
    Li, S., Mueller, K., Jackowski, M., Dione, D., Staib, L.: Physical-space refraction-corrected transmission ultrasound computed tomography made computationally practical. Lect. Notes Comput. Sci. 5242, 280–288 (2008). doi: 10.1007/978-3-540-85990-1_34
  21. 21.
    Fu, Z., Jeong, W.K., Pan, Y., Kirby, R., Whitaker, R.T.: A fast iterative method for solving the Eikonal equation on triangulated surfaces. SIAM J. Sci. Comput. 33(5), 2468 (2011). doi: 10.1137/100788951
  22. 22.
    Jeong, W.K., Whitaker, R.T.: A fast Eikonal equation solver for parallel systems. In Proceedings of the SIAM Conference on Computational Science & Engineering (CSE) (2007)Google Scholar
  23. 23.
    Dang, F., Emad, N., Fender, A.: A fine-grained parallel model for the fast iterative method in solving eikonal equations. In Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC) (2013), pp. 152–157. DOI: 10.1109/3PGCIC.2013.29
  24. 24.
    Dang, F., Emad, N.: Multi-level parallel upwind finite difference scheme for anisotropic front propagation. In Proceedings of the International Meeting on High Performance Computing for Computational Science (VECPAR) (2014)Google Scholar
  25. 25.
    Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput 74(250), 603 (2005). doi: 10.1090/S0025-5718-04-01678-3 CrossRefzbMATHGoogle Scholar
  26. 26.
    Detrixhe, M., Gibou, F., Min, C.: A parallel fast sweeping method for the Eikonal equation. J. Comput. Phys. 237, 46 (2013). doi: 10.1016/ CrossRefMathSciNetGoogle Scholar
  27. 27.
    Hysing, S.R., Turek, S.: The Eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids. In: Proceedings of Algoritmy, pp. 22–31 (2005)Google Scholar
  28. 28.
    Sussman, M., Fatemi, E.: An efficient. Interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165 (1999). doi: 10.1137/S1064827596298245 CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Ausas, R.F., Dari, E.A., Buscaglia, G.C.: A geometric mass-preserving redistancing scheme for the level set function. Int. J. Numer. Methods Fluids 65(8), 989 (2011). doi: 10.1002/fld.2227
  30. 30.
    Losasso, F., Fedkiw, R., Osher, S.: Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35(10), 995 (2006). doi: 10.1016/j.compfluid.2005.01.006 CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute for MicroelectronicsTU WienViennaAustria
  2. 2.Silvaco Europe Ltd.St Ives, CambridgeUK

Personalised recommendations