Advertisement

Journal of Computational Electronics

, Volume 13, Issue 3, pp 753–762 | Cite as

Determining bound states in a semiconductor device with contacts using a nonlinear eigenvalue solver

  • William G. Vandenberghe
  • Massimo V. Fischetti
  • Roel Van Beeumen
  • Karl Meerbergen
  • Wim Michiels
  • Cedric Effenberger
Article

Abstract

We present a nonlinear eigenvalue solver enabling the calculation of bound solutions of the Schrödinger equation in a system with contacts. We discuss how the imposition of contacts leads to a nonlinear eigenvalue problem and discuss the numerics for a one- and two-dimensional potential. We reformulate the problem so that the eigenvalue problem can be efficiently solved by the recently proposal rational Krylov method for nonlinear eigenvalue problems, known as NLEIGS. In order to improve the convergence of the method, we propose a holomorphic extension such that we can easily deal with the branch points introduced by a square root. We use our method to determine the bound states of the one-dimensional Pöschl–Teller potential, a two-dimensional potential describing a particle in a canyon and the multi-band Hamiltonian of a topological insulator.

Keywords

Bound states Nonlinear eigenvalue problem Contacts 

References

  1. 1.
    Lent, C.S., Kirkner, D.J.: The quantum transmitting boundary method. J. Appl. Phys. 67(10), 6353–6359 (1990). doi: 10.1063/1.345156. ISSN 0021–8979.
  2. 2.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge university press, Cambridge (1997)Google Scholar
  3. 3.
    Laux, S.E., Kumar, A., Fischetti, M.V.: Ballistic fet modeling using QDAME: quantum device analysis by modal evaluation. IEEE Trans. Nanotechnol. 1(4), 255–259 (2002). doi: 10.1109/TNANO.2002.807388. ISSN 1536–125X.
  4. 4.
    Polizzi, E., Ben Abdallah, N.: Self-consistent three dimensional models for quantum ballistic transport in open systems. Phys. Rev. B 66(24), 245301–245301 (2002)CrossRefGoogle Scholar
  5. 5.
    Vandenberghe, W., Sorée, B., Magnus, W., Groeseneken, G.: Zener tunneling in semiconductors under nonuniform electric fields. J. Appl. Phys. 107(5), 054520 (2010)CrossRefGoogle Scholar
  6. 6.
    Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745–791 (1990). doi: 10.1103/RevModPhys.62.745
  7. 7.
    Mamaluy, D., Vasileska, D., Sabathil, M., Zibold, T., Vogl, P.: Contact block reduction method for ballistic transport and carrier densities of open nanostructures. Phys. Rev. B 71, 245321 (2005). doi: 10.1103/PhysRevB.71.245321
  8. 8.
    Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001). doi: 10.1103/PhysRevB.63.245407
  9. 9.
    Li, R., Zhang, J., Hou, S., Qian, Z., Shen, Z., Zhao, X., Xue, Z.: A corrected negf-dft approach for calculating electronic transport through molecular devices: filling bound states and patching the non-equilibrium integration. Chem. Phys. 336(2–3), 127–135 (2007). doi: 10.1016/j.chemphys.2007.06.011. ISSN 0301–0104.
  10. 10.
    Frensley, W.R.: Numerical evaluation of resonant states. Superlattices Microstr. 11(3), 347–350 (1992)CrossRefGoogle Scholar
  11. 11.
    Bowen, R.C., Frensley, W.R., Klimeck, G., Lake, R.K.: Transmission resonances and zeros in multiband models. Phys. Rev. B 52(4), 2754 (1995)CrossRefGoogle Scholar
  12. 12.
    Klimeck, G., Lake, R., Chris Bowen, R., Frensley, W.R., Moise, T.S.: Quantum device simulation with a generalized tunneling formula. Appl. Phys. Lett. 67(17), 2539–2541 (1995)CrossRefGoogle Scholar
  13. 13.
    Karner, M., Gehring, A., Kosina, H.: Efficient calculation of lifetime based direct tunneling through stacked dielectrics. J. Comput. Electron. 5(2–3), 161–165 (2006)CrossRefGoogle Scholar
  14. 14.
    Blanchard, P., Stubbe, J.: Bound states for schrödinger Hamiltonians: phase space methods and applications. Rev. Math. Phys. 08(04), 503–547 (1996). doi: 10.1142/S0129055X96000172
  15. 15.
    Gustafson, S.J., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics. Universitext (En ligne). Springer, Berlin (2011). ISBN 9783642218668Google Scholar
  16. 16.
    Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys 82, 3045–3067 (2010). doi: 10.1103/RevModPhys.82.3045
  17. 17.
    Güttel, S., Van Beeumen, R., Meerbergen, K., Michiels, W.: NLEIGS: a class of robust fully rational Krylov methods for nonlinear eigenvalue problems. Technical Report TW633, Department of Computer Science, KU Leuven, Leuven (2013)Google Scholar
  18. 18.
    Effenberger, C.: Robust successive computation of eigenpairs for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 34(3), 1231–1256 (2013)Google Scholar
  19. 19.
    Van Beeumen, R., Meerbergen, K., Michiels, W.: A rational Krylov method based on Hermite interpolation for nonlinear Eigenvalue problems. SIAM J. Sci. Comput. 35(1), A327–A350 (2013) Google Scholar
  20. 20.
    Jarlebring, E., Michiels, W., Meerbergen, K.: A linear eigenvalue algorithm for the nonlinear eigenvalue problem. Numerische Mathematik 122(1), 169–195 (2012). doi: 10.1007/s00211-012-0453-0. ISSN 0029–599X.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Flügge, S.: Practical Quantum Mechanics: Reprint of the Classics in Mathematics Series, 1994th edn. Springer-Verlag GmbH, Heidelberg (1994)Google Scholar
  22. 22.
    Andrei Bernevig, B., Hughes, T.L., Zhang, S.-C.: Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314(5806), 1757–1761 (2006). doi: 10.1126/science.1133734 CrossRefGoogle Scholar
  23. 23.
    König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L.W., Qi, X.-L., Zhang, S.-C.: Quantum spin hall insulator state in HgTe quantum wells. Science 318(5851), 766–770 (2007). doi: 10.1126/science.1148047 CrossRefGoogle Scholar
  24. 24.
    Novik, E.G., Pfeuffer-Jeschke, A., Jungwirth, T., Latussek, V., Becker, C.R., Landwehr, G., Buhmann, H., Molenkamp, L.W.: Band structure of semimagnetic hg\(_{1-y}\) mn\(_{y}\) quantum wells. Phys. Rev. B, 72: 035321 (2005). doi: 10.1103/PhysRevB.72.035321

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • William G. Vandenberghe
    • 1
  • Massimo V. Fischetti
    • 1
  • Roel Van Beeumen
    • 2
  • Karl Meerbergen
    • 2
  • Wim Michiels
    • 2
  • Cedric Effenberger
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of Texas at DallasRichardsonUSA
  2. 2.Department of Computer ScienceKU LeuvenHeverleeBelgium
  3. 3.EPFLLausanneSwitzerland

Personalised recommendations