Journal of Computational Electronics

, Volume 13, Issue 4, pp 781–793 | Cite as

DNA: hardware and software of life

  • Amand LucasEmail author


In this introductory paper I will first go back in history and endeavor to explain in simple terms, with the support of optical diffraction experiments, just how X-ray fiber diffraction pictures lead Watson and Crick to discover the DNA double helix. Second I will present the geometrical and chemical structures of the molecule, the “hardware of life”, emphasizing in some detail the nature of the hydrogen bonding in the Watson–Crick (WC) base pairs A–T, G–C formed by the natural bases of the genetic alphabet. I will then discuss a class of twelve artificial analogues to these bases, some of which have been successfully synthesized by organic chemists by rearranging the pattern of hydrogen bonds of the base pairs. Adopting the perspective of theoretical computer science and error-coding theory, I will finally present DNA as the “software of life”, by discussing Mac Dónaill’s recent interpretation of the optimality of the natural genetic cipher as compared to other possible alphabets selected from the artificial analogues.


DNA X-ray diffraction Optical simulations Hydrogen bonding Artificial basepairs Genetic alphabet  Error-coding theory 



This paper is dedicated to the memory of my dear friend and colleague, the late geneticist Jean Vandenhaute of the University of Namur, Belgium. I thank my colleagues, professors Guy Maghuin and Jacques Pasteels for reading critically this manuscript and for many discussions on its subject.


  1. 1.
    Bohr, N.: On the constitution of atoms and molecules. Philos. Mag. 26, 1–25 (1913)CrossRefzbMATHGoogle Scholar
  2. 2.
    von Laue, M.: Phys. Z. 14, 421–423; 1040–1041; 1075–1079 (1913)Google Scholar
  3. 3.
    Bragg, W.L.: The diffraction of electromagnetic waves by a crystal. Proc. Camb. Philios. Soc. 17, 43–57 (1913)zbMATHGoogle Scholar
  4. 4.
    Bragg, W.L.: The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. (Lond.) A89, 248–277 (1913)CrossRefGoogle Scholar
  5. 5.
    Moseley, H.G.J.: The high frequency spectra of the elements. Philos. Mag. 27, 703–713 (1914)CrossRefGoogle Scholar
  6. 6.
    Polanyi, M.: The X-ray fiber diagram. Z. Phys. 7, 149–180 (1921)CrossRefGoogle Scholar
  7. 7.
    Astbury, W.T., Street, A.: X-ray studies of the structure of hair, wool and related fibers. Philos. Trans. R. Soc. Lond. A230, 75–101 (1931)Google Scholar
  8. 8.
    Bernal, J.D., Crowfoot, D.: X-rays photographs of crystalline pepsin. Nature 133, 794–795 (1934)CrossRefGoogle Scholar
  9. 9.
    Bernal, J.D., Fankuchen, I., Perutz, M.: An X-ray study of chymotrypsin and haemoglobin. Nature 141, 523–524 (1938)CrossRefGoogle Scholar
  10. 10.
    Bohr, N.: Light and life. Nature 131(421–423), 457–459 (1933)CrossRefGoogle Scholar
  11. 11.
    Delbrück, M.: Light and life III. Carlsberg Res. Commun. 41(6), 299–309 (1976)CrossRefGoogle Scholar
  12. 12.
    Stent, G.: Light and life: Niels Bohr’s legacy to contemporary biology. Science 160, 384 (1968)Google Scholar
  13. 13.
    Watson, J.D.: The Double Helix. Athenaeum, New York (1968)Google Scholar
  14. 14.
    Mac Dónaill, D.A.: A parity code interpretation of nucleotide alphabet composition. Chem. Commun. 18, 2062–2063 (2002)CrossRefGoogle Scholar
  15. 15.
    Mac Dónaill, D.A.: Why nature chose A, C, G and U/T: an error-coding perspective of nucleotide alphabet composition. Orig. Life Evol. Biosph. 33, 433–455 (2003)CrossRefGoogle Scholar
  16. 16.
    Mac Dónaill, D.A .: IEEE Engineering in Medicine and Biology Magazine, Jan–Feb (2006)Google Scholar
  17. 17.
    Maddox, B.: Rosalind Franklin—The Dark Lady of DNA. Harper Collins, London (2002)Google Scholar
  18. 18.
    Judson, H.F.: The Eighth Day of Creation. Penguin Books, London (1979)Google Scholar
  19. 19.
    Olby, R.: The Path to the Double Helix. The Discovery of DNA. Dover Publications, New York (1994)Google Scholar
  20. 20.
    Fuller, W.: Who said “Helix”. Nature 424, 876–878 (2003)CrossRefGoogle Scholar
  21. 21.
    Wilkins, M.H.F., Stokes, A.R., Wilson, H.R.: Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids. Nature 171, 739 (1953)CrossRefGoogle Scholar
  22. 22.
    Franklin, R., Gosling, R.G.: Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953)CrossRefGoogle Scholar
  23. 23.
    Franklin, R., Gosling, R.G.: The structure of sodium thymonucleate fibres. I. The influence of water content. Acta Cryst. 6, 673–677 (1953)CrossRefGoogle Scholar
  24. 24.
    Crick, F.H.C.: What Mad Pursuit. Basic Books-Harper Collins, New York (1988)Google Scholar
  25. 25.
    Langridge, R., Seeds, W.E., Wilson, H.R., Hooper, C.W., Wilkins, M.H.F., Hamilton, L.D.: Molecular structure of deoxyribonucleic acid (DNA). J. Biophys. Biochem. Cytol. 3, 767 (1957)CrossRefGoogle Scholar
  26. 26.
    Chargaff, E.: Chemical specificity of nucleic acids and the mechanism of their enzymatic degradation. Experientia 6, 201–209 (1950) Google Scholar
  27. 27.
    Watson, F.W., Crick, F.H.C.: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953)CrossRefGoogle Scholar
  28. 28.
    Bragg, W.L.: A new type of “X-ray Microscope”. Nature 143, 678 (1939)Google Scholar
  29. 29.
    Bragg, W.L.: Lightning calculations with light. Nature 154, 69–72 (1944)CrossRefGoogle Scholar
  30. 30.
    Lucas, A.A., Lambin, P.H., Mairesse, R., Mathot, M.: Revealing the backbone structure of B-DNA from laser optical simulations of its X-ray diffraction diagram. J. Chem. Educ. 76, 378–383 (1999)CrossRefGoogle Scholar
  31. 31.
    Lucas, A.A.: Rosetta stone of the genetic language. Int. J. Quantum Chem. 90, 1491–1504 (2002)CrossRefGoogle Scholar
  32. 32.
    Lucas, A.A.: A -DNA and B-DNA : comparing their historical X-ray fiber diffraction images. J. Chem. Educ. 85, 737–744 (2008)CrossRefGoogle Scholar
  33. 33.
    Lucas, A.A., Lambin, P.: Diffraction by DNA, carbon nanotubes and other helical nanostructures. Rep. Prog. Phys. 68, 1181–1249 (2005)CrossRefGoogle Scholar
  34. 34.
    Shugar, D.L., Kierdaszukl, B.: New light on tautomerism of purines and pyrimidines and its biological and genetic implications, Proc. Int. Symp. Biomol. Struct. Interactions, Suppl. J. Biosci. 8, 657–668 (1985)CrossRefGoogle Scholar
  35. 35.
    Manoj, K.S., Leszczynski, J.: Tautomerism in nucleic acid bases and base pairs: a brief overview. WIREs Comput. Mol. Sci. 3, 637–649 (2013)CrossRefGoogle Scholar
  36. 36.
    Arunan, E., et al.: Defining the hydrogen bond: an account (IUPAC Technical Report). Pure Appl. Chem. 83, 1637–1641 (2011)Google Scholar
  37. 37.
    Gilli, G., Gilli, P.: The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory, Published to Oxford Scholarship Online: September 2009. Print ISBN-13: 9780199558964Google Scholar
  38. 38.
    Piccirilli, J.A., Krauch, T., Moroney, S.E., Benner, S.A.: Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343, 33–37 (1990)CrossRefGoogle Scholar
  39. 39.
    Yang, Z., Hutter, D., Sheng, P., Sismour, A.M., Benner, S.A.: Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res. 34(21), 6095–6101 (2006)CrossRefGoogle Scholar
  40. 40.
    Benner, S.A., Yang, Z., Chen, F.: Synthetic biology, tinkering biology, and artificial biology. What are we learning? C. R. Chim. 14, 372–387 (2011)CrossRefGoogle Scholar
  41. 41.
    Szathmary, E.: Perspectives nature reviews. Genetics 4, 995 (2003)Google Scholar
  42. 42.
  43. 43.
    Crick, F.H.C.: The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of NamurNamurBelgium

Personalised recommendations