Journal of Computational Electronics

, Volume 12, Issue 4, pp 685–691 | Cite as

Comparison of electron and phonon transport in disordered semiconductor carbon nanotubes

  • H. Sevinçli
  • T. Lehmann
  • D. A. Ryndyk
  • G. Cuniberti
Article

Abstract

Charge and thermal conductivities are the most important parameters of carbon nanomaterials as candidates for future electronics. In this paper we address the effects of Anderson type disorder in long semiconductor carbon nanotubes (CNTs) to electron charge conductivity and lattice thermal conductivity using the atomistic Green function approach. The electron and phonon transmissions are analyzed as a function of the length of the disordered nanostructures. The thermal conductance as a function of temperature is calculated for different lengths. Analysis of the transmission probabilities as a function of length of the disordered device shows that both electrons and phonons with different energies display different transport regimes, i.e. quasi-ballistic, diffusive and localization regimes coexist. In the light of the results we discuss heating of the semiconductor device in electronic applications.

References

  1. 1.
    Latil, S., Roche, S., Mayou, D., Charlier, J.-C.: Mesoscopic transport in chemically doped carbon nanotubes. Phys. Rev. Lett. 92, 256805 (2004) CrossRefGoogle Scholar
  2. 2.
    Roche, S., Jiang, J., Triozon, F., Saito, R.: Conductance and coherence lengths in disordered carbon nanotubes: role of lattice defects and phonon vibrations. Phys. Rev. B 72, 113410 (2005) CrossRefGoogle Scholar
  3. 3.
    Charlier, J.-C., Blase, X., Roche, S.: Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677 (2007) CrossRefGoogle Scholar
  4. 4.
    Lherbier, A., Biel, B., Niquet, Y.-M., Roche, S.: Transport length scales in disordered graphene-based materials: strong localization regimes and dimensionality effects. Phys. Rev. Lett. 100, 036803 (2008) CrossRefGoogle Scholar
  5. 5.
    White, C.T., Todorov, T.N.: Nature 393, 240 (1998) CrossRefGoogle Scholar
  6. 6.
    Dresselhaus, M.S., Dresselhaus, G., Hofmann, M.: Other one-dimensional systems and thermal properties. J. Vac. Sci. Technol. B 26, 1613 (2008) CrossRefGoogle Scholar
  7. 7.
    Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008) CrossRefGoogle Scholar
  8. 8.
    Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.K., Goddard, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008) CrossRefGoogle Scholar
  9. 9.
    Markussen, T., Jauho, A.P., Brandbyge, M.: Electron and phonon transport in silicon nanowires: atomistic approach to thermoelectric properties. Phys. Rev. B 79, 035415 (2009) CrossRefGoogle Scholar
  10. 10.
    Chang, C.W., Okawa, D., Garcia, H., Yuzvinsky, T.D., Majumdar, A., Zettl, A.: Tunable thermal links. Appl. Phys. Lett. 90, 193114 (2007) CrossRefGoogle Scholar
  11. 11.
    Pop, E., Mann, D., Wang, Q., Goodson, K., Dai, H.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96 (2006) CrossRefGoogle Scholar
  12. 12.
    Pop, E., Mann, D.A., Goodson, K.E., Dai, H.: Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys. 101, 093710 (2007) CrossRefGoogle Scholar
  13. 13.
    Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008) CrossRefGoogle Scholar
  14. 14.
    Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79(15), 155413 (2009) CrossRefGoogle Scholar
  15. 15.
    Sevinçli, H., Cuniberti, G.: Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010) CrossRefGoogle Scholar
  16. 16.
    Li, W., Sevinçli, H., Cuniberti, G., Roche, S.: Phonon transport in large scale carbon-based disordered materials: implementation of an efficient order-N and real-space Kubo methodology. Phys. Rev. B 82, 041410 (2010) CrossRefGoogle Scholar
  17. 17.
    Ghosh, S., Bao, W., Nika, D.L., Subrina, S., Pokatilov, E.P., Lau, C.N., Balandin, A.A., Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555 (2010) CrossRefGoogle Scholar
  18. 18.
    Sevinçli, H., Li, W., Mingo, N., Cuniberti, G., Roche, S.: Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets. Phys. Rev. B 84, 205444 (2011) CrossRefGoogle Scholar
  19. 19.
    Sevik, C., Sevinçli, H., Cuniberti, G., Çagin, T.: Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett. 11, 4971 (2011) CrossRefGoogle Scholar
  20. 20.
    Li, W, Sevinçli, H., Roche, S., Cuniberti, G.: Efficient linear scaling method for computing the thermal conductivity of disordered materials. Phys. Rev. B 83, 155416 (2011) CrossRefGoogle Scholar
  21. 21.
    Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011) CrossRefGoogle Scholar
  22. 22.
    Haskins, J., Kınacı, A., Sevik, C., Sevinçli, H., Cuniberti, G., Çagin, T.: Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 5, 3779 (2011) CrossRefGoogle Scholar
  23. 23.
    Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: fundamentals and applications. Mater. Res. Soc. Bull. 37, 1273 (2012) CrossRefGoogle Scholar
  24. 24.
    Sevinçli, H, Sevik, C., Çagin, T., Cuniberti, G.: A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Scientific Reports 3 (2013) Google Scholar
  25. 25.
    Bae, M.H., Li, Z., Aksamija, Z., Martin, P.N., Xiong, F., Ong, Z.Y., Knezevic, I., Pop, E.: Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4, 1734 (2013) CrossRefGoogle Scholar
  26. 26.
    Savić, I., Mingo, N., Stewart, D.A.: Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable? Phys. Rev. Lett. 101, 165502 (2008) CrossRefGoogle Scholar
  27. 27.
    Stewart, D.A., Savić, I., Mingo, N.: First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity. Nano Lett. 9, 81 (2009) CrossRefGoogle Scholar
  28. 28.
    Chang, C.W., Fennimore, A.M., Afanasiev, A., Okawa, D., Ikuno, T., Garcia, H., Li, D., Majumdar, A., Zettl, A.: Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 97, 085901 (2006) CrossRefGoogle Scholar
  29. 29.
    Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622 (1947) CrossRefMATHGoogle Scholar
  30. 30.
    Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F, Met. Phys. 14, 1205 (1985) CrossRefGoogle Scholar
  31. 31.
    Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Highly convergent schemes for the calculation of bulk and surface green functions. J. Phys. F, Met. Phys. 15, 851 (1985) CrossRefGoogle Scholar
  32. 32.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995) CrossRefGoogle Scholar
  33. 33.
    Cuniberti, G., Fagas, G., Richter, K. (eds.): Introducing Molecular Electronics. Lecture Notes in Physics, vol. 680. Springer, Berlin (2005) Google Scholar
  34. 34.
    Ryndyk, D.A., Gutiérrez, R., Song, B., Cuniberti, G.: Green function techniques in the treatment of quantum transport at the molecular scale. In: Energy Flow Dynamics in Biomaterial Systems, p. 213. Springer, Berlin (2009) CrossRefGoogle Scholar
  35. 35.
    Cuevas, J.C., Scheer, E.: Molecular Electronics: An Introduction to Theory and Experiment. World Scientific, Singapore (2010) CrossRefGoogle Scholar
  36. 36.
    Gunlycke, D., Lawler, H.M., White, C.T.: Room-temperature ballistic transport in narrow graphene strips. Phys. Rev. B 75, 085418 (2007) CrossRefGoogle Scholar
  37. 37.
    Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1988) Google Scholar
  38. 38.
    Zimmermann, J., Pavone, P., Cuniberti, G.: Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: minimal force-constant model. Phys. Rev. B 78, 045410 (2008) CrossRefGoogle Scholar
  39. 39.
    Yamada, M., Yamakita, Y., Ohno, K.: Phonon dispersions of hydrogenated and dehydrogenated carbon nanoribbons. Phys. Rev. B 77, 054302 (2008) CrossRefGoogle Scholar
  40. 40.
    Angelescu, D., Cross, M., Roukes, M.: Heat transport in mesoscopic systems. Superlattices Microstruct. 23, 673 (1998) CrossRefGoogle Scholar
  41. 41.
    Rego, L.G.C., Kirczenow, G.: Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232 (1998) CrossRefGoogle Scholar
  42. 42.
    Ozpineci, A., Ciraci, S.: Quantum effects of thermal conductance through atomic chains. Phys. Rev. B 63, 125415 (2001) CrossRefGoogle Scholar
  43. 43.
    Mingo, N., Yang, L.: Phonon transport in nanowires coated with an amorphous material: an atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003) CrossRefGoogle Scholar
  44. 44.
    Segal, D., Nitzan, A., Hänggi, P.: Thermal conductance through molecular wires. J. Chem. Phys. 119, 6840 (2003) CrossRefGoogle Scholar
  45. 45.
    Mingo, N.: Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74, 125402 (2006) CrossRefGoogle Scholar
  46. 46.
    Wang, J.S., Wang, J., Zeng, N.: Nonequilibrium Green’s function approach to mesoscopic thermal transport. Phys. Rev. B 74, 033408 (2006) CrossRefGoogle Scholar
  47. 47.
    Yamamoto, T., Watanabe, K.: Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes. Phys. Rev. Lett. 96, 255503 (2006) CrossRefGoogle Scholar
  48. 48.
    Galperin, M., Nitzan, A., Ratner, M.A.: Heat conduction in molecular transport junctions. Phys. Rev. B 75, 155312 (2007) CrossRefGoogle Scholar
  49. 49.
    Wang, J.S., Wang, J., Lü, J.T.: Quantum thermal transport in nanostructures. Eur. Phys. J. B 62, 381 (2008) CrossRefGoogle Scholar
  50. 50.
    Dubi, Y., Di Ventra, M.: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131 (2011) CrossRefGoogle Scholar
  51. 51.
    Nikolić, B.K., Saha, K.K., Markussen, T., Thygesen, K.S.: First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes. J. Comput. Electron. 11, 78 (2012) CrossRefGoogle Scholar
  52. 52.
    Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512 (1992) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • H. Sevinçli
    • 1
    • 4
    • 3
  • T. Lehmann
    • 1
  • D. A. Ryndyk
    • 1
    • 2
    • 5
  • G. Cuniberti
    • 1
    • 2
    • 5
  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsDresden University of TechnologyDresdenGermany
  2. 2.Center for Advancing Electronics DresdenTU DresdenDresdenGermany
  3. 3.Department of Micro- and Nanotechnology (DTU Nanotech)Technical University of DenmarkKgs. LyngbyDenmark
  4. 4.Department of Materials Science and EngineeringIzmir Institute of TechnologyIzmirTurkey
  5. 5.Dresden Center for Computational Materials ScienceTU DresdenDresdenGermany

Personalised recommendations