Journal of Computational Electronics

, Volume 12, Issue 4, pp 701–721 | Cite as

VSP—a quantum-electronic simulation framework

  • Oskar BaumgartnerEmail author
  • Zlatan Stanojevic
  • Klaus Schnass
  • Markus Karner
  • Hans Kosina


The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP’s existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator’s capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors.


VSP Schrödinger Quantum-mechanical simulation Nano-electronic devices Numerical methods 



This work has been supported by the Austrian Science Fund program F025 (IR-ON), and the Austrian Research Promotion Agency, project 838551 (NeGFQTS).


  1. 1.
    Kannan, G., Vasileska, D.: In: 14th International Workshop on Computational Electronics (IWCE), pp. 1–4 (2010). doi: 10.1109/IWCE.2010.5677977 Google Scholar
  2. 2.
    Tan, I.H., Snider, G.L., Chang, L.D., Hu, E.L.: J. Appl. Phys. 68(8), 4071 (1990). CrossRefGoogle Scholar
  3. 3.
    Snider, G.L.: (2013)
  4. 4.
    Birner, S., Zibold, T., Andlauer, T., Kubis, T., Sabathil, M., Trellakis, A., Vogl, P.: IEEE Trans. Electron Devices 54(9), 2137 (2007). doi: 10.1109/TED.2007.902871 CrossRefGoogle Scholar
  5. 5.
    Trellakis, A., Zibold, T., Andlauer, T., Birner, S., Smith, R., Morschl, R., Vogl, P.: J. Comput. Electron. 5, 285 (2006). doi: 10.1007/s10825-006-0005-x CrossRefGoogle Scholar
  6. 6.
    Steiger, S.: NEMO 5 User Manual. NCN Purdue Univ., Purdue Google Scholar
  7. 7.
    Steiger, S., Povolotskyi, M., Park, H.-H., Kubis, T., Klimeck, G.: IEEE Trans. Nanotechnol. 10(6), 1464 (2011). doi: 10.1109/TNANO.2011.2166164 CrossRefGoogle Scholar
  8. 8.
    Auf der Maur, M., Penazzi, G., Romano, G., Sacconi, F., Pecchia, A., Di Carlo, A.: IEEE Trans. Electron Devices 58(5), 1425 (2011). doi: 10.1109/TED.2011.2114666 CrossRefGoogle Scholar
  9. 9.
    Auf der Maur, M., Sacconi, F., Penazzi, G., Romano, G., Povolotskyi, M., Pecchia, A., Di Carlo, A.: J. Comput. Electron. 9, 262 (2010). doi: 10.1007/s10825-010-0331-x CrossRefGoogle Scholar
  10. 10.
    Steiger, S., Veprek, R., Witzigmann, B.: Opt. Quantum Electron. 41, 551 (2009). doi: 10.1007/s11082-010-9360-8 CrossRefGoogle Scholar
  11. 11.
    Veprek, R.G.: Computational modeling of semiconductor nanostructures for optoelectronics. Ph.D. thesis, ETH, Zürich (2009) Google Scholar
  12. 12.
    SILVACO, Inc., ATLAS User’s Manual Google Scholar
  13. 13.
    Sentaurus Device:
  14. 14.
    Karner, M., Gehring, A., Holzer, S., Pourfath, M., Wagner, M., Goes, W., Vasicek, M., Baumgartner, O., Kernstock, C., Schnass, K., Zeiler, G., Grasser, T., Kosina, H., Selberherr, S.: J. Comput. Electron. 6(1), 179 (2007). doi: 10.1007/s10825-006-0077-7 CrossRefGoogle Scholar
  15. 15.
    Stanojevic, Z., Kosina, H.: In: IWCE, pp. 93–94 (2013) Google Scholar
  16. 16.
    Klima, R., Grasser, T., Selberherr, S., Wien, T.: In: 15th European Simulation Multiconference, pp. 161–165 (2001) Google Scholar
  17. 17.
    Avila, L.S., Barre, S., Blue, R., Geveci, B., Henderson, A., Hoffman, W.A., King, B., Law, C.C., Martin, K.M., Schroeder, W.J.: The VTK User’s Guide. Kitware, New York (2010) Google Scholar
  18. 18.
    Knuth, D.E.: Comput. J. 27(2), 97 (1984) CrossRefzbMATHGoogle Scholar
  19. 19.
    OASIS Darwin Information Typing Architecture (DITA): Version 1.2 Specification (2010).
  20. 20.
    Fischer, C.: Bauelementsimulation in einer computergestützten Entwurfsumgebung. Ph.D. thesis, Technische Universität Wien (1994) Google Scholar
  21. 21.
    Institute for Microelectronics and Global TCAD Solutions GmbH: Minimos-NT User Manual.
  22. 22.
    Karner, M.: Multi-dimensional simulation of closed quantum systems. Master’s thesis, Technische Universität Wien (2004) Google Scholar
  23. 23.
    Trellakis, A., Galick, A.T., Pacelli, A., Ravaioli, U.: J. Appl. Phys. 81(12), 7880 (1997). doi: 10.1063/1.365396. CrossRefGoogle Scholar
  24. 24.
    Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: J. Appl. Phys. 81(12), 7845 (1997) CrossRefGoogle Scholar
  25. 25.
    Bowen, R.C., Klimeck, G., Lake, R.K., Frensley, W.R., Moise, T.: J. Appl. Phys. 81(7), 3207 (1997) CrossRefGoogle Scholar
  26. 26.
    Cresti, A., Farchioni, R., Grosso, G., Pastori Parravicini, G.: Phys. Rev. B 68, 075306 (2003) CrossRefGoogle Scholar
  27. 27.
    Pourfath, M., Kosina, H., Selberherr, S.: J. Comput. Electron. 5, 155 (2006) CrossRefGoogle Scholar
  28. 28.
    Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: J. Appl. Phys. 91(4), 2343 (2002) CrossRefGoogle Scholar
  29. 29.
    John, D., Castro, L., Pereira, P., Pulfrey, D.: In: Nanotech, vol. 3, pp. 65–68 (2004) Google Scholar
  30. 30.
    Baumgartner, O., Karner, M., Holzer, S., Pourfath, M., Grasser, T., Kosina, H.: In: Proceedings of the 2007 NSTI Nanotechnology Conference, vol. 3, pp. 145–148 (2007) Google Scholar
  31. 31.
    Ikonić, Z.: In: Harrison, P. (ed.) Quantum Wells, Wires and Dots, pp. 345–369. Wiley Interscience, New York (2005) Google Scholar
  32. 32.
    Baumgartner, O., Karner, M., Sverdlov, V., Kosina, H.: In: 13th International Workshop on Computational Electronics (IWCE), pp. 53–56 (2009). doi: 10.1109/IWCE.2009.5091131 Google Scholar
  33. 33.
    Luttinger, J.M., Kohn, W.: Phys. Rev. 97(4), 869 (1955). CrossRefzbMATHGoogle Scholar
  34. 34.
    Baumgartner, O., Karner, M., Sverdlov, V., Kosina, H.: Solid-State Electron. 54(2), 143 (2010). doi: 10.1016/j.sse.2009.12.010. Selected Full-Length Extended Papers from the EUROSOI 2009 Conference CrossRefGoogle Scholar
  35. 35.
    Stanojevic, Z., Baumgartner, O., Sverdlov, V., Kosina, H.: In: Proceedings of the 14th International Workshop on Computational Electronics (IWCE), pp. 5–8 (2010). doi: 10.1109/IWCE.2010.5677927 Google Scholar
  36. 36.
    Stanojevic, Z., Sverdlov, V., Baumgartner, O., Kosina, H.: Solid-State Electron. 70(0), 73 (2012). doi: 10.1016/j.sse.2011.11.022. CrossRefGoogle Scholar
  37. 37.
    Hensel, J.C., Hasegawa, H., Nakayama, M.: Phys. Rev. 138(1A), A225 (1965). CrossRefGoogle Scholar
  38. 38.
    Baumgartner, O., Stanojevic, Z., Kosina, H.: In: Proceedings of the 16th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 91–94 (2011) Google Scholar
  39. 39.
    Sirtori, C., Capasso, F., Faist, J., Scandolo, S.: Phys. Rev. B 50(12), 8663 (1994). CrossRefGoogle Scholar
  40. 40.
    Bahder, T.B.: Phys. Rev. B 41(17), 11992 (1990). CrossRefGoogle Scholar
  41. 41.
    Kriechbaum, M., Ambrosch, K.E., Fantner, E.J., Clemens, H., Bauer, G.: Phys. Rev. B 30, 3394 (1984). doi: 10.1103/PhysRevB.30.3394 CrossRefGoogle Scholar
  42. 42.
    Iotti, R.C., Rossi, F.: Phys. Rev. Lett. 87(14), 146603 (2001). CrossRefGoogle Scholar
  43. 43.
    Jirauschek, C., Scarpa, G., Lugli, P., Vitiello, M.S., Scamarcio, G.: J. Appl. Phys. 101(8), 086109 (2007). doi: 10.1063/1.2719683. CrossRefGoogle Scholar
  44. 44.
    Milovanovic, G., Kosina, H.: J. Comput. Electron. 9, 211 (2010). doi: 10.1007/s10825-010-0325-8 CrossRefGoogle Scholar
  45. 45.
    Iotti, R.C., Ciancio, E., Rossi, F.: Phys. Rev. B 72(12), 125347 (2005). doi: 10.1103/PhysRevB.72.125347 CrossRefGoogle Scholar
  46. 46.
    Baumgartner, O., Stanojevic, Z., Kosina, H.: In: Sabelfeld, K.K., Dimov, I. (eds.) Monte Carlo Methods and Applications. De Gruyter Proceedings in Mathematics, pp. 59–67. De Gruyter, Berlin (2012), Chap. 7 Google Scholar
  47. 47.
    Stanojevic, Z., Karner, M., Schnass, K., Kernstock, C., Baumgartner, O., Kosina, H.: In: Proceedings of the 16th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 143–146 (2011) Google Scholar
  48. 48.
    Kramer, K.M., Hitchon, W.N.G.: Semiconductor Devices. Prentice Hall, New York (1997) Google Scholar
  49. 49.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston (1996) zbMATHGoogle Scholar
  50. 50.
    Li, X.S.: ACM Trans. Math. Softw. 31(3), 302 (2005) CrossRefzbMATHGoogle Scholar
  51. 51.
    Schenk, O., Bollhöfer, M., Römer, R.: SIAM Rev. 50(1), 91 (2008). doi: 10.1137/070707002 MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia (2000) Google Scholar
  53. 53.
    Björck, A., Pereyra, V.: Math. Comput. 24(112), 893 (1970). doi: 10.2307/2004623 CrossRefGoogle Scholar
  54. 54.
    Fejér, L.: Math. Z. 37, 287 (1933) MathSciNetCrossRefGoogle Scholar
  55. 55.
    Clenshaw, C.W., Curtis, A.R.: Numer. Math. 2, 197 (1960) MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Waldvogel, J.: BIT 46, 195 (2006). doi: 10.1007/s10543-006-0045-4 MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
  58. 58.
  59. 59.
    Auth, C., Allen, C., Blattner, A., Bergstrom, D., Brazier, M., Bost, M., Buehler, M., Chikarmane, V., Ghani, T., Glassman, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., Hentges, P., Heussner, R., Hicks, J., Ingerly, D., Jain, P., Jaloviar, S., James, R., Jones, D., Jopling, J., Joshi, S., Kenyon, C., Liu, H., McFadden, R., Mcintyre, B., Neirynck, J., Parker, C., Pipes, L., Post, I., Pradhan, S., Prince, M., Ramey, S., Reynolds, T., Roesler, J., Sandford, J., Seiple, J., Smith, P., Thomas, C., Towner, D., Troeger, T., Weber, C., Yashar, P., Zawadzki, K., Mistry, K.: In: VLSIT, pp. 131–132 (2012). doi: 10.1109/VLSIT.2012.6242496 Google Scholar
  60. 60.
    Stanojevic, Z., Kosina, H.: In: Silicon Nanoelectronics Workshop, pp. 132–133 (2013) Google Scholar
  61. 61.
    Stanojevic, Z., Kosina, H.: In: Intl. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD) (2013) Google Scholar
  62. 62.
    Prange, R.E., Nee, T.W.: Phys. Rev. 168, 779 (1968). doi: 10.1103/PhysRev.168.779 CrossRefGoogle Scholar
  63. 63.
    Jin, S., Fischetti, M.V., Tang, T.w.: J. Appl. Phys. 102(8), 083715 (2007). doi: 10.1063/1.2802586 CrossRefGoogle Scholar
  64. 64.
    Kang, Z.T., Arnold, B., Summers, C.J., Wagner, B.K.: Nanotechnology 17(17), 4477 (2006). CrossRefGoogle Scholar
  65. 65.
    Klimeck, G., Lake, R., Bowen, R.C., Frensley, W.R., Moise, T.S.: Appl. Phys. Lett. 67(17), 2539 (1995) CrossRefGoogle Scholar
  66. 66.
    Park, H.H., Jiang, Z., Akkala, A.G., Steiger, S., Povolotskyi, M., Kubis, T.C., Sellier, J.M.D., Tan, Y., Kim, S., Luisier, M., Agarwal, S., McLennan, M., Klimeck, G., Geng, J.: Resonant Tunneling Diode Simulation with NEGF (2008). doi: 10.4231/D3DZ03144.
  67. 67.
    Hofstetter, D., Beck, M., Faist, J.: Appl. Phys. Lett. 81(15), 2683 (2002). doi: 10.1063/1.1512954. CrossRefGoogle Scholar
  68. 68.
    Giorgetta, F., Baumann, E., Graf, M., Yang, Q., Manz, C., Kohler, K., Beere, H., Ritchie, D., Linfield, E., Davies, A., Fedoryshyn, Y., Jackel, H., Fischer, M., Faist, J., Hofstetter, D.: IEEE J. Quantum Electron. 45(8), 1039 (2009). doi: 10.1109/JQE.2009.2017929 CrossRefGoogle Scholar
  69. 69.
    Baumgartner, O., Stanojevic, Z., Kosina, H.: In: 16th International Workshop on Computational Electronics (IWCE), pp. 86–87 (2013) Google Scholar
  70. 70.
  71. 71.
    Vienna Schrödinger Poisson:

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Oskar Baumgartner
    • 1
    Email author
  • Zlatan Stanojevic
    • 1
  • Klaus Schnass
    • 2
  • Markus Karner
    • 2
  • Hans Kosina
    • 1
  1. 1.Institute for MicroelectronicsTU WienWienAustria
  2. 2.Global TCAD Solutions GmbHWienAustria

Personalised recommendations