Advertisement

Journal of Computational Electronics

, Volume 12, Issue 4, pp 692–700 | Cite as

Benchmarking of GFET devices for amplifier application using multiscale simulation approach

  • Sebastien Fregonese
  • Manuel Potereau
  • Nathalie Deltimple
  • Cristell Maneux
  • Thomas Zimmer
Article

Abstract

Starting from advanced NEGF physical simulation of a 100 nm gate length Graphene FET, we attempt to use these results as a starting point to evaluate this technology for microwave circuit benchmarking. Using an improved compact model carefully adjusted on NEGF simulation data, in both DC and AC regime, we use this model to design a mmW amplifier at 140 GHz. In the first part of the design procedure, we use the ADS compact model for coplanar waveguide of passive elements. The complete design is then verified using electromagnetic FEM simulation which gives more reliable results at very high frequencies for passive elements and interconnections. This analysis has shown that unlike first GFET generations, impedance matching problems may be naturally solved with transistor performance improvements. Finally, the GFET device and circuit is compared to HEMT technologies and shows promising performances.

Keywords

GFET Milli-meter wave amplifier Graphene Model Circuit 

Notes

Acknowledgements

This work is part of the GRADE project supported by the European Commission through the Seventh Framework Program for Research and Technological Development and is also supported by the French National Research Agency (ANR) through the P2N “GRACY” project.

References

  1. 1.
    Wu, Y.Q., Lin, Y.-M., Jenkins, K.A., Ott, J.A., Dimitrakopoulos, C., Farmer, D.B., Xia, F., Grill, A., Antoniadis, D.A., Avouris, P.: RF performance of short channel graphene field-effect transistor. In: IEEE International Electron Devices Meeting (IEDM), pp. 9.6.1–9.6.3 (2010) Google Scholar
  2. 2.
    Lin, Y.-M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.-Y., Grill, A., Avouris, P.: 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966), 662 (2010) CrossRefGoogle Scholar
  3. 3.
    Lin, Y.-M., Chiu, H.-Y., Jenkins, K.A., Farmer, D.B., Avouris, P., Valdes-Garcia, A.: Dual-gate graphene FETs with f_{T} of 50 GHz. IEEE Electron Device Lett. 31(1), 68–70 (2010) CrossRefGoogle Scholar
  4. 4.
    Meng, N., Fernandez, J.F., Vignaud, D., Dambrine, G., Happy, H.: Fabrication and characterization of an epitaxial graphene nanoribbon-based field-effect transistor. IEEE Trans. Electron Devices 58(6), 1594–1596 (2011) CrossRefGoogle Scholar
  5. 5.
    Moon, J.-s., Gaskill, D.K., Campbell, P., Asbeck, P.: Graphene-on-SiC and graphene-on-Si transistors and RF applications. In: IEEE MTT-S International Microwave Symposium Digest (MTT), pp. 1–4 (2011) Google Scholar
  6. 6.
    Pallecchi, E., Benz, C., Betz, A.C., von Löhneysen, H., Placáis, B., Danneau, R.: Graphene microwave transistors on sapphire substrates. Appl. Phys. Lett. 99(11), 113502 (2011) CrossRefGoogle Scholar
  7. 7.
    Lin, Y.-M., Farmer, D.B., Jenkins, K.A., Wu, Y., Tedesco, J.L., Myers-Ward, R.L., Eddy, C.R., Gaskill, D.K., Dimitrakopoulos, C., Avouris, P.: Enhanced performance in epitaxial graphene FETs with optimized channel morphology. IEEE Electron Device Lett. 32(10), 1343–1345 (2011) CrossRefGoogle Scholar
  8. 8.
    Wu, Y.Q., et al.: Record high RF performance for epitaxial graphene transistors. In: IEDM 2011, Washington (2011) Google Scholar
  9. 9.
    Liao, L., Lin, Y.-C., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang, K.L., Huang, Y., Duan, X.: High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305–308 (2010) CrossRefGoogle Scholar
  10. 10.
    Meric, I., et al.: High-frequency performance of graphene field effect transistors with saturating IV-characteristics. In: IEDM 2011, Washington (2011) Google Scholar
  11. 11.
    Yang, X., Liu, G., Balandin, A.A., Mohanram, K.: Triple-mode single-transistor graphene amplifier and its applications. ACS Nano 4(10), 5532–5538 (2012) CrossRefGoogle Scholar
  12. 12.
    Wang, Z., Zhang, Z., Xu, H., Ding, L., Wang, S., Peng, L.-M.: A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl. Phys. Lett. 96(17), 173104 (2010) CrossRefGoogle Scholar
  13. 13.
    Wang, H., Hsu, A., Wu, J., Kong, J., Palacios, T.: Graphene-based ambipolar RF mixers. IEEE Electron Device Lett. 31(9), 906–908 (2010) CrossRefzbMATHGoogle Scholar
  14. 14.
    Han, S.-J., Jenkins, K.A., Valdes Garcia, A., Franklin, A.D., Bol, A.A., Haensch, W.: High-frequency graphene voltage amplifier. Nano Lett. 11(9), 3690–3693 (2011) CrossRefGoogle Scholar
  15. 15.
    Moon, J.S., Curtis, D., Zehnder, D., Kim, S., Gaskill, D.K., Jernigan, G.G., Myers-Ward, R.L., Eddy, C.R., Campbell, P.M., Lee, K.-M., Asbeck, P.: Low-phase-noise graphene FETs in ambipolar RF applications. IEEE Electron Device Lett. PP(99), 1–3 (2011) Google Scholar
  16. 16.
    Lin, Y.-M., Valdes-Garcia, A., Han, S.-J., Farmer, D.B., Meric, I., Sun, Y., Wu, Y., Dimitrakopoulos, C., Grill, A., Avouris, P., Jenkins, K.A.: Wafer-scale graphene integrated circuit. Science 332(6035), 1294–1297 (2011) CrossRefGoogle Scholar
  17. 17.
    Habibpour, O., Vukusic, J., Stake, J.: A 30-GHz integrated subharmonic mixer based on a multichannel graphene FET. IEEE Trans. Microw. Theory Tech. 61(2), 841–847 (2013) CrossRefGoogle Scholar
  18. 18.
    Andersson, M.A., Habibpour, O., Vukusic, J., Stake, J.: 10 dB small-signal graphene FET amplifier. Electron. Lett. 48(14), 861–863 (2012) CrossRefGoogle Scholar
  19. 19.
    Frégonèse, S., Meng, N., Nguyen, H.-N., Majek, C., Maneux, C., Happy, H., Zimmer, T.: Electrical compact modelling of graphene transistors. Solid-State Electron. 73, 27–31 (2012) CrossRefGoogle Scholar
  20. 20.
    Lu, Y., Guo, J.: Role of dissipative quantum transport in DC, RF, and self-heating characteristics of short channel graphene FETs. In: IEEE International Electron Devices Meeting (IEDM), pp. 11.5.1–11.5.4 (2011) Google Scholar
  21. 21.
    Fregonese, S., Magallo, M., Maneux, C., Happy, H., Zimmer, T.: Scalable electrical compact modeling for graphene FET transistors. IEEE Trans. Nanotechnol. 12(4), 539–546 (2013) CrossRefGoogle Scholar
  22. 22.
    Thiele, S.A., Schaefer, J.A., Schwierz, F.: Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels. J. Appl. Phys. 107(9), 094505 (2010) CrossRefGoogle Scholar
  23. 23.
    Zhu, W., Perebeinos, V., Freitag, M., Avouris, P.: Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80(23), 235402 (2009) CrossRefGoogle Scholar
  24. 24.
    Dorgan, V.E., Bae, M.-H., Pop, E.: Mobility and saturation velocity in graphene on SiO2. arXiv:1005.2711 (2010)
  25. 25.
    Allain, P.E., Fuchs, J.N.: Klein tunneling in graphene: optics with massless electrons. Eur. Phys. J. B 83(3), 301–317 (2011) CrossRefGoogle Scholar
  26. 26.
    Zebrev, G.I., Melnik, E.V., Tselykovskiy, A.A.: Influence of interface traps and electron-hole puddles on quantum capacitance and conductivity in graphene field-effect transistors. arXiv:1011.5127 (2010)
  27. 27.
    M.D.: High frequency noise characterisation of graphene FET device. Presented at the IMS 2013, Seattle. http://program.ims2013.org/users/sched Session Tuesday: TU3C
  28. 28.
    Thierry, P.: Étude et perspective des transistors à hétérostructure AlInAs/GaInAs de longueur de grille inférieure à 100 nm et conception de circuits intégrés en bande G. http://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/22962975-d4e5-4fab-bce1-83f0f079d64a
  29. 29.
    Wang, H., Lai, R., Lo, D.C.-W., Streit, D.C., Pospieszalski, M.W., Berenz, J.: A 140-GHz monolithic low noise amplifier. In: Electron Devices Meeting IEDM’94. Technical Digest., International, pp. 933–934 (1994). Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sebastien Fregonese
    • 1
  • Manuel Potereau
    • 1
  • Nathalie Deltimple
    • 1
  • Cristell Maneux
    • 1
  • Thomas Zimmer
    • 1
  1. 1.CNRS, UMR 5218, Laboratoire IMSUniversité de BordeauxBordeauxFrance

Personalised recommendations