Journal of Computational Electronics

, Volume 12, Issue 4, pp 553–562 | Cite as

Coupling atomistic and continuous media models for electronic device simulation

  • Matthias Auf der Maur
  • Alessandro Pecchia
  • Gabriele Penazzi
  • Fabio Sacconi
  • Aldo Di Carlo


In this article we highlight the necessity of atomistic based, fully quantum mechanical simulation approaches for modern electronic devices and their coupling with classical models. We review different ways of such couplings and provide application examples.


Device simulation Multiscale modeling Atomistic models 


  1. 1.
    International Technology Roadmap for Semiconductors (ITRS) (2005).
  2. 2.
    Zaima, S.: Technology evolution for silicon nanoelectronics: postscaling technology. Jpn. J. Appl. Phys. 52 (2013) Google Scholar
  3. 3.
    Lu, W., Xie, P., Lieber, C.M.: Nanowire transistor performance limits and applications. IEEE Trans. Electron Devices 55(11), 2859 (2008) CrossRefGoogle Scholar
  4. 4.
    Dang, T., Anghel, L., Leveugle, R.: Cntfet basics and simulation. In: International Conference on Design and Test of Integrated Systems in Nanoscale Technology. DTIS 2006, pp. 28–33 (2006) CrossRefGoogle Scholar
  5. 5.
    Moon, J.S., Gaskill, D.: Graphene: its fundamentals to future applications. IEEE Trans. Microw. Theory Tech. 59(10), 2702 (2011) CrossRefGoogle Scholar
  6. 6.
    de Falco, C., Gatti, E., Lacaita, A.L., Sacco, R.: Quantum-corrected drift-diffusion models for transport in semiconductor devices. J. Comput. Phys. 204(2), 533 (2005). doi: 10.1016/ MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Yamakawa, S., Goodnick, S., Aboud, S., Saraniti, M.: Quantum corrected full-band cellular Monte Carlo simulation of AlGaN/GaN HEMTs. J. Comput. Electron. 3(3–4), 299 (2004) CrossRefGoogle Scholar
  8. 8.
    Shifren, L., Ringhofer, C., Ferry, D.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Devices 50(3), 769 (2003) CrossRefGoogle Scholar
  9. 9.
    Pecchia, A., Di Carlo, A.: Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 67, 1497 (2004) CrossRefGoogle Scholar
  10. 10.
    Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 μm Mosfet’s: a 3-d atomistic simulation study. IEEE Trans. Electron Devices 45(12), 2505 (1998) CrossRefGoogle Scholar
  11. 11.
    Di Carlo, A.: Semiconductor nanostructures. Phys. Status Solidi B 217, 703 (2000) CrossRefGoogle Scholar
  12. 12.
    Di Carlo, A.: Microscopic theory of nanostructured semiconductor devices: beyond the envelope-function approximation. Semicond. Sci. Technol. 18, 1 (2003) CrossRefGoogle Scholar
  13. 13.
    Tomic, S., Vukmirovic, N.: Symmetry reduction in multiband Hamiltonians for semiconductor quantum dots: the role of interfaces and higher energy bands. J. Appl. Phys. 110(5), 053710 (2011) CrossRefGoogle Scholar
  14. 14.
    Fiorentini, V., Bernardini, F., Della Sala, F., Di Carlo, A., Lugli, P.: Effects of macroscopic polarization in iii–v nitride multiple quantum wells. Phys. Rev. B, Condens. Matter Mater. Phys. 60(12), 8849 (1999) CrossRefGoogle Scholar
  15. 15.
    Keating, P.N.: Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145(2), 637 (1966) CrossRefGoogle Scholar
  16. 16.
    Vogl, P., Hjalmarson, H.P., Dow, J.D.: A semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44(5), 365 (1983) CrossRefGoogle Scholar
  17. 17.
    Jancu, J.M., Scholz, R., Beltram, F., Bassani, F.: Empirical spds tight-binding calculation for cubic semiconductors; General method and material parameters. Phys. Rev. B 57(11) (1998) Google Scholar
  18. 18.
    Broughton, J.Q., Abraham, F.F., Bernstein, N., Kaxiras, E.: Concurrent coupling of length scales: methodology and application. Phys. Rev. B 60, 2391 (1999) CrossRefGoogle Scholar
  19. 19.
    Rudd, R., Broughton, J.: Concurrent coupling of length scales. Phys. Status Solidi B 217, 251 (2000) CrossRefGoogle Scholar
  20. 20.
    Shimokawa, T., Mortensen, J., Schiotz, J., Jacobsen, K.: Matching conditions in the quasicontinuum method: removal of the error introduced at the interface between the coarse-grained and fully atomistic region. Phys. Rev. B 69, 214104 (2004) CrossRefGoogle Scholar
  21. 21.
    Lu, G., Tadmor, E., Kaxiras, E.: From electrons to finite elements: a concurrent multiscale approach for metals. Phys. Rev. B 73, 024108 (2006) CrossRefGoogle Scholar
  22. 22.
    Tang, Z., Zhao, H., Li, G., Aluru, N.: Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures. Phys. Rev. B 74, 064110 (2006) CrossRefGoogle Scholar
  23. 23.
    Curtin, W.A., Miller, R.E.: Atomistic/continuum coupling. Model. Simul. Mater. Sci. Eng. 11, R33 (2003) CrossRefGoogle Scholar
  24. 24.
    Guo, Z.X.: Multiscale Materials Modelling: Fundamentals and Applications, 1st edn. Woodhead Publishing, Cambridge (2007) CrossRefGoogle Scholar
  25. 25.
    Xiao, S., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193(17–20), 1645 (2004/05/07) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, S., Khare, R., Lu, Q., Belytschko, T.: A bridging domain and strain computation method for coupled atomistic-continuum modelling of solids. Int. J. Numer. Methods Eng. 70, 913 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Anciaux, G., Coulaud, O., Roman, J.: High performance multiscale simulation for crack propagation. In: International Conference on Parallel Processing Workshops. ICPP 2006 Workshops, pp. 8–480 (2006) Google Scholar
  28. 28.
    Guo, J., Datta, S., Lundstrom, M., Anantram, M.P.: Towards Multi-Scale Modeling of Carbon Nanotube Transistors. (2003). arXiv:cond-mat/0312551
  29. 29.
    Klimeck, G.: Quantum and semi-classical transport in nemo 1-d. J. Comput. Electron. 2(2–4), 177 (2003) CrossRefGoogle Scholar
  30. 30.
    Arnold, A., Jüngel, A.: In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems. Springer, Berlin (2006) Google Scholar
  31. 31.
    Xu, Y., Aluru, N.R.: Multiscale electrostatic analysis of silicon nanoelectromechanical systems (NEMS) via heterogeneous quantum models. Phys. Rev. B 77, 075313 (2008) CrossRefGoogle Scholar
  32. 32.
    Yam, C., Meng, L., Chen, G., Chen, Q., Wong, N.: Multiscale quantum mechanics/electromagnetics simulation for electronic devices. Phys. Chem. Chem. Phys. 13, 14365 (2011) CrossRefGoogle Scholar
  33. 33.
    Auf der Maur, M., Povolotskyi, M., Sacconi, F., Pecchia, A., Di Carlo, A.: Multiscale simulation of MOS systems based on high-κ oxides. J. Comput. Electron. 7(3), 398 (2008) CrossRefGoogle Scholar
  34. 34.
    Auf der Maur, M., Sacconi, F., Penazzi, G., Povolotskyi, M., Romano, G., Pecchia, A., Di Carlo, A.: Coupling atomistic and finite element approaches for the simulation of optoelectronic devices. Opt. Quantum Electron. 41(9), 671 (2009) CrossRefGoogle Scholar
  35. 35.
    Peng, J., Chen, Q., Wong, N., Meng, L.Y., Yam, C.Y., Chen, G.H.: New multi-scale simulation framework for next-generation electronic design automation with application to the junctionless transistor (2012). ArXiv e-prints Google Scholar
  36. 36.
    Leiner, C., Schweitzer, S., Schmidt, V., Belegratis, M., Wenzl, F.P., Hartmann, P., Hohenester, U., Sommer, C.: Multi-scale simulation of an optical device using a novel approach for combining ray-tracing and fdtd. In: Proc. SPIE 8781, Integrated Optics: Physics and Simulations, pp. 87,810Z–87,810Z–9 (2013) Google Scholar
  37. 37.
    Sinha, A., Goodson, K.E.: Review: multiscale thermal modeling in nanoelectronics. Int. J. Multiscale Comput. Eng. 3(1), 107 (2005) CrossRefGoogle Scholar
  38. 38.
    Auf der Maur, M., Penazzi, G., Romano, G., Sacconi, F., Pecchia, A., Di Carlo, A.: The multiscale paradigm in electronic device simulation. IEEE Trans. Electron Devices 58(5), 1425 (2011) CrossRefGoogle Scholar
  39. 39.
    Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2, 367 (2007) MathSciNetzbMATHGoogle Scholar
  40. 40.
    Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387 (1995) CrossRefzbMATHGoogle Scholar
  41. 41.
    Boykin, T.: Recent developments in tight-binding approaches for nanowires. J. Comput. Electron. 8(2), 142 (2009) CrossRefGoogle Scholar
  42. 42.
    Niquet, Y.M., Delerue, C.: Band offsets, wells, and barriers at nanoscale semiconductor heterojunctions. Phys. Rev. B 84, 075478 (2011) CrossRefGoogle Scholar
  43. 43.
    Trellakis, A., Galick, A.T., Pancelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional Schrödinger–Poisson equations in quantum structures. J. Appl. Phys. 81, 7880 (1997) CrossRefGoogle Scholar
  44. 44.
    Rodrigues, W., Lopez, M., Pecchia, A., Auf der Maur, M., Di Carlo, A.: Time performance comparison between gpu and multi-core cpu for the atomistic calculation of quantum energy states. Unpublished Manuscript, University of Rome Tor Vergata, Italy Google Scholar
  45. 45.
    Pecchia, A., Penazzi, G., Salvucci, L., Di Carlo, A.: Non-equilibrium Green’s functions in density functional tight binding: method and applications. New J. Phys. 10(6), 065022 (2008) CrossRefGoogle Scholar
  46. 46.
    Pryor, C., Kim, J., Wang, L.W., Williamson, A.J., Zunger, A.: Comparison of two methods for describing the strain profiles in quantum dots. J. Appl. Phys. 83(5), 2548 (1998) CrossRefGoogle Scholar
  47. 47.
    Camacho, D., Niquet, Y.M.: Application of Keating’s valence force field model to non-ideal wurtzite materials. Physica E, Low-Dimens. Syst. Nanostruct. 42, 1361 (2010) CrossRefGoogle Scholar
  48. 48.
    Crawford, M.H.: Leds for solid-state lighting: performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron. 15(4), 1028 (2009) MathSciNetCrossRefGoogle Scholar
  49. 49.
    McLaughlin, D., Pearce, J.: Progress in indium gallium nitride materials for solar photovoltaic energy conversion. Metall. Mater. Trans. A 44(4), 1947 (2013) CrossRefGoogle Scholar
  50. 50.
    Sacconi, F., Auf der Maur, M., Di Carlo, A.: Optoelectronic properties of nanocolumn InGaN/GaN LEDs. IEEE Trans. Electron Devices 59(11), 2979 (2012) CrossRefGoogle Scholar
  51. 51.
    Wu, Y.R., Chiu, C., Chang, C.Y., Yu, P., Kuo, H.C.: Size-Dependent Strain Relaxation and Optical Characteristics of InGaN/GaN Nanorod LEDs. IEEE J. Sel. Top. Quantum Electron. 15(4), 1226 (2009) CrossRefGoogle Scholar
  52. 52.
    Barettin, D., Madsen, S., Lassen, B., Willatzen, M.: Comparison of wurtzite atomistic and piezoelectric continuum strain models: implications for the electronic band structure. Superlattices Microstruct. 47(1), 134 (2010) CrossRefGoogle Scholar
  53. 53.
    Grieb, T., Müller, K., Fritz, R., Schowalter, M., Neugebohrn, N., Knaub, N., Volz, K., Rosenauer, A.: Determination of the chemical composition of ganas using stem haadf imaging and stem strain state analysis. Ultramicroscopy 117, 15 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Matthias Auf der Maur
    • 1
  • Alessandro Pecchia
    • 2
  • Gabriele Penazzi
    • 3
  • Fabio Sacconi
    • 4
  • Aldo Di Carlo
    • 1
  1. 1.Dept. of Electronic EngineeringUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.CNR-ISMNMonterotondo, RomeItaly
  3. 3.BCCMSUniversity BremenBremenGermany
  4. 4.Tiberlab Srl.RomeItaly

Personalised recommendations