Journal of Computational Electronics

, Volume 12, Issue 3, pp 405–419 | Cite as

Time-resolved electron transport with quantum trajectories

  • G. Albareda
  • D. Marian
  • A. Benali
  • S. Yaro
  • N. Zanghì
  • X. Oriols
Article

Abstract

It is shown that Bohmian mechanics applied to describe electron transport in open systems (in terms of waves and particles) leads to a quantum-trajectory Monte Carlo algorithm where randomness appears because of the uncertainties in the number of electrons, their energies and the initial positions of the trajectories. The usefulness of this formalism to provide predictions beyond DC, namely AC regime, transient and noise, in nanoelectronic devices, is proven and discussed in detail. In particular, we emphasize the ability of this formalism to provide a straightforward answer to the measurement of the total current and its advantages to deal with the many-body problem in electron transport scenarios. All the results presented along the manuscript have been obtained using the electron device simulator BITLLES.

Keywords

Quantum electron transport High-frequency Bohmian trajectories Multi-time measurement Displacement current Current fluctuations 

Notes

Acknowledgements

The authors acknowledge discussion with F.L. Traversa, A. Alarcón, X. Cartoixà, D. Jiménez. This work has been partially supported by the “Ministerio de Ciencia e Innovación” through the Spanish Project TEC2012-31330, the Beatriu de Pinós program through the project 2010BP-A00069 and by the Grant agreement no: 604391 of the Flagship initiative “Graphene-Based Revolutions in ICT and Beyond”. D.M. and N.Z. are supported in part by INFN.

References

  1. 1.
    De Broglie, L.: Recherches sur la théorie des quantas. PhD thesis, University of Paris (1924) Google Scholar
  2. 2.
    De Broglie, L.: Recherches sur la théorie des quantas. Ann. Phys. 3, 22–128 (1925) MATHGoogle Scholar
  3. 3.
    Madelung, E.: Quantum theory in hydrodynamical form. Z. Phys. 40, 322–326 (1927) CrossRefGoogle Scholar
  4. 4.
    Heisenberg, W.: Uber quantentheoretishe Umdeutung kinematisher und mechanischer Beziehungen. Z. Phys. 33, 879–893 (1925). English translation by van der Waerden, B.L.: Sources of Quantum Mechanics. Dover Publications (1968) MATHCrossRefGoogle Scholar
  5. 5.
    Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926) MATHCrossRefGoogle Scholar
  6. 6.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables I. Phys. Rev. 85, 166–193 (1952) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bohm, D.: Proof that probability density approaches |Ψ|2 in causal interpretation of quantum theory. Phys. Rev. 89, 458–466 (1953) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dürr, D., Teufel, S.: Bohmian Mechanics: The Physics and Mathematics of Quantum Theory. Springer, Berlin (2009) Google Scholar
  9. 9.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987) MATHGoogle Scholar
  10. 10.
    Oriols, X., Mompart, J.: Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology. Pan Stanford Publishing, Singapore (2012) Google Scholar
  11. 11.
    Oriols, X.: Quantum trajectory approach to time dependent transport in mesoscopic systems with electron-electron interactions. Phys. Rev. Lett. 98, 066803 (2007) CrossRefGoogle Scholar
  12. 12.
    Cohen-Tanoudji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley, New York (1977) Google Scholar
  13. 13.
    Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992) MATHCrossRefGoogle Scholar
  14. 14.
    Von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation by Beyer R.T.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955) MATHGoogle Scholar
  15. 15.
    Marian, D., et al.: Unpublished Google Scholar
  16. 16.
    Traversa, F.L., Albareda, G., Di Ventra, M., Oriols, X.: Robust weak-measurement protocol for Bohmian velocities. Phys. Rev. A 87, 052124 (2013) CrossRefGoogle Scholar
  17. 17.
    Di Ventra, M.: Electrical Transport in Nanoscale Systems. Cambridge University Press, Cambridge (2008) CrossRefGoogle Scholar
  18. 18.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: On the role of density matrices in Bohmian mechanics. Found. Phys. 35, 449–467 (2005) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Alarcón, A., Cartoixà, X., Oriols, X.: Towards the explicit computation of Bohm velocities associated to n-electron wavefunctions with arbitrary spin-orientations. Phys. Status Solidi 7, 2636–2639 (2010) CrossRefGoogle Scholar
  20. 20.
    Alarcón, A., et al.: Unpublished Google Scholar
  21. 21.
    Norsen, T.: The theory of (exclusively) local beables. Found. Phys. 40, 1858–1884 (2010) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Albareda, G., Suñé, J., Oriols, X.: Many-particle Hamiltonian for open systems with full Coulomb interaction: application to classical and quantum time-dependent simulations of nanoscale electron devices. Phys. Rev. B 79, 075315 (2009) CrossRefGoogle Scholar
  23. 23.
    Albareda, G., Lopez, H., Cartoixà, X., Suñé, J., Oriols, X.: Time-dependent boundary conditions with lead-sample Coulomb correlations: application to classical and quantum nanoscale electron device simulators. Phys. Rev. B 82, 085301 (2010) CrossRefGoogle Scholar
  24. 24.
    Shockley, W.: Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938) CrossRefGoogle Scholar
  25. 25.
    Ramo, S.: Currents induced by electron motion. Proc. IRE 27, 584–585 (1939) CrossRefGoogle Scholar
  26. 26.
    Pellegrini, B.: Electric charge motion, induced current, energy balance, and noise. Phys. Rev. B 34, 5921–5924 (1986) CrossRefGoogle Scholar
  27. 27.
    Pellegrini, B.: Elementary applications of quantum-electrokinematics theorem. Nuovo Cimento D 15, 881–896 (1993) CrossRefGoogle Scholar
  28. 28.
    Pellegrini, B.: Extension of the electrokinematics theorem to the electromagnetic field and quantum mechanics. Nuovo Cimento D 15, 855–879 (1993) CrossRefGoogle Scholar
  29. 29.
    Alarcón, A., Oriols, X.: Computation of quantum electron transport with local current conservation using quantum trajectories. J. Stat. Mech. Theory Exp. 2009, P01051 (2009) CrossRefGoogle Scholar
  30. 30.
    Benali, A., Traversa, F.L., Albareda, G., Aghoutane, M., Oriols, X.: Effect of gate-all-around transistor geometry on the high-frequency noise: analytical discussion. Fluct. Noise Lett. 11, 1241002 (2012) CrossRefGoogle Scholar
  31. 31.
    Albareda, G., Traversa, F.L., Benali, A., Oriols, X.: Computation of quantum electrical currents through the Ramo-Shockley-Pellegrini theorem with trajectories. Fluct. Noise Lett. 11, 1242008 (2012) CrossRefGoogle Scholar
  32. 32.
    Oriols, X., Alarcón, A., Fernández-Díaz, E.: Time dependent quantum current for independent electrons driven under non-periodic conditions. Phys. Rev. B 71, 245322 (2005) CrossRefGoogle Scholar
  33. 33.
    Oriols, X., Fernandez-Diaz, E., Alvarez, A., Alarcón, A.: An electron injection model for time-dependent simulators of nanascale devices with electron confinement: application to the comparison of the intrinsic noise of 3D-, 2D, and 1D-ballistic transistors. Solid-State Electron. 51, 306–319 (2007) CrossRefGoogle Scholar
  34. 34.
    Blanter, Y.M., Büttiker, M.: Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000) CrossRefGoogle Scholar
  35. 35.
    Schottky, W.: Über spontane stromschwankungen in verschiedenen elektrizitätsleitern. Ann. Phys. (Leipz.) 57, 541–567 (1918) CrossRefGoogle Scholar
  36. 36.
    Traversa, F.L., et al.: Time-dependent many-particle simulation for resonant tunneling diodes: interpretation of an analytical small-signal equivalent circuit. IEEE Trans. Electron Devices 58, 2104–2112 (2011) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • G. Albareda
    • 1
  • D. Marian
    • 2
  • A. Benali
    • 1
  • S. Yaro
    • 1
  • N. Zanghì
    • 2
  • X. Oriols
    • 1
  1. 1.Departament d’Enginyeria ElectònicaUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Dipartimento di Fisica dell’Università di Genova and INFN sezione di GenovaGenovaItaly

Personalised recommendations