Journal of Computational Electronics

, Volume 12, Issue 2, pp 203–231 | Cite as

The recursive Green’s function method for graphene

  • Caio H. Lewenkopf
  • Eduardo R. MuccioloEmail author


We describe how to apply the recursive Green’s function method to the computation of electronic transport properties of graphene sheets and nanoribbons in the linear response regime. This method allows for an amenable inclusion of several disorder mechanisms at the microscopic level, as well as inhomogeneous gating, finite temperature, and, to some extend, dephasing. We present algorithms for computing the conductance, density of states, and current densities for armchair and zigzag atomic edge alignments. Several numerical results are presented to illustrate the usefulness of the method.


Electronic transport Recursive Green’s function method Graphene nanoribbons 



Financial support by the Brazilian funding agencies FAPERJ and CNPq is gratefully acknowledged.


  1. 1.
    Castro Neto, A.H.F., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009) CrossRefGoogle Scholar
  2. 2.
    Mucciolo, E.R., Lewenkopf, C.H.: Disorder and electronic transport in graphene. J. Phys. Condens. Matter 22, 273201 (2010) CrossRefGoogle Scholar
  3. 3.
    Shon, N.H., Ando, T.: Quantum transport in two-dimensional graphite system. J. Phys. Soc. Jpn. 67, 2421 (1998) CrossRefGoogle Scholar
  4. 4.
    Ostrovsky, P.M., Gornyi, I.V., Mirlin, A.D.: Electron transport in disordered graphene. Phys. Rev. B 74, 235443 (2006) CrossRefGoogle Scholar
  5. 5.
    Nomura, K., MacDonald, A.H.: Quantum transport of massless Dirac fermions. Phys. Rev. Lett. 98, 076602 (2007) CrossRefGoogle Scholar
  6. 6.
    Nomura, K., Koshino, M., Ryu, S.: Topological delocalization of two-dimensional massless Dirac fermions. Phys. Rev. Lett. 99, 146806 (2007) CrossRefGoogle Scholar
  7. 7.
    Tworzydło, J., Groth, C.W., Beenakker, C.W.J.: Finite difference method for transport properties of massless Dirac fermions. Phys. Rev. B 78, 235438 (2008) CrossRefGoogle Scholar
  8. 8.
    Hernández, A.R., Lewenkopf, C.H.: Finite-difference method for transport of two-dimensional massless Dirac fermions in a ribbon geometry. Phys. Rev. B 86, 155439 (2012) CrossRefGoogle Scholar
  9. 9.
    Thouless, D.J., Kirkpatrick, S.: Conductivity of the disordered linear chain. J. Phys. C 14, 235 (1981) CrossRefGoogle Scholar
  10. 10.
    Drouvelis, P.S., Schmelcher, P., Bastian, P.: Parallel implementation of the recursive Green’s function method. J. Comput. Phys. 215, 741 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    MacKinnon, A.: The calculation of transport properties and density of states of disordered solids. Z. Phys. B 59, 385 (1985) CrossRefGoogle Scholar
  12. 12.
    Sols, F., Macucci, M., Ravaioli, U., Hess, K.: Theory for a quantum modulated transistor. J. Appl. Phys. 66, 3892 (1989) CrossRefGoogle Scholar
  13. 13.
    Baranger, H.U., DiVincenzo, D.P., Jalabert, R.A., Stone, A.D.: Classical and quantum ballistic-transport anomalies in microjunctions. Phys. Rev. B 44, 10637 (1991) CrossRefGoogle Scholar
  14. 14.
    Kazymyrenko, K., Waintal, X.: Knitting algorithm for calculating Green functions in quantum systems. Phys. Rev. B 77, 115119 (2008) CrossRefGoogle Scholar
  15. 15.
    Kramer, T., Kreisbeck, C., Krueckl, V.: Wave-packet dynamics approach to transport in mesoscopic systems. Phys. Scr. 82, 038101 (2010) CrossRefGoogle Scholar
  16. 16.
    Yuan, S., De Raedt, H., Katsnelson, M.I.: Modeling electronic structure and transport properties of graphene with resonant scattering centers. Phys. Rev. B 82, 115448 (2010) CrossRefGoogle Scholar
  17. 17.
    Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod. Phys. 78, 275 (2006) zbMATHCrossRefGoogle Scholar
  18. 18.
    Ferreira, A., Viana-Gomes, J., Nilsson, J., Mucciolo, E.R., Peres, N.M.R., Castro Neto, A.H.: Unified description of the dc conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers. Phys. Rev. B 83, 165402 (2011) CrossRefGoogle Scholar
  19. 19.
    Triozon, F., Roche, S.: Efficient linear scaling method for computing the Landauer-Büttiker conductance. Eur. Phys. J. B 46, 427 (2005) CrossRefGoogle Scholar
  20. 20.
    Liu, M.-H., Richter, K.: Efficient quantum transport simulation for bulk graphene heterojunctions. Phys. Rev. B 86, 115445 (2012) CrossRefGoogle Scholar
  21. 21.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1996) Google Scholar
  22. 22.
    Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997) CrossRefGoogle Scholar
  23. 23.
    Pastawski, H.M., Medina, E.: Tight-Binding methods in quantum transport through molecules and small devices: from the coherent to the decoherent description. Rev. Mex. Fis. 47, 1 (2001) Google Scholar
  24. 24.
    Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 32, 306 (1988) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Caroli, C., Combescot, R., Nozieres, P., Saint-James, D.: Direct calculation of the tunneling current. J. Phys. C 4, 916 (1971) CrossRefGoogle Scholar
  26. 26.
    Lee, P.A., Fisher, D.S.: Anderson localization in two dimensions. Phys. Rev. Lett. 47, 882 (1981) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Fisher, D.S., Lee, P.A.: Relation between conductivity and transmission matrix. Phys. Rev. B 23, 6851 (1981) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sajjad, R.N., Polanco, C., Ghosh, A.W.: Atomistic deconstruction of current flow in graphene based hetero-junctions (2013). arXiv:1302.4473
  29. 29.
    Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512 (1992) CrossRefGoogle Scholar
  30. 30.
    Hernández, A., Apel, V.M., Pinheiro, F.A., Lewenkopf, C.H.: Quantum electronic transport: linear and nonlinear conductance from the Keldysh approach. Physica A 385, 148 (2007) CrossRefGoogle Scholar
  31. 31.
    Lewenkopf, C.H., Mucciolo, E.R., Castro Neto, A.H.: Numerical studies of conductivity and Fano factor in disordered graphene. Phys. Rev. B 77, 081410R (2008) CrossRefGoogle Scholar
  32. 32.
    Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors, 2nd edn. Springer, Heidelberg (2008) Google Scholar
  33. 33.
    Mucciolo, E.R.: Unpublished Google Scholar
  34. 34.
    Schomerus, H.: Effective contact model for transport through weakly-doped graphene. Phys. Rev. B 76, 045433 (2007) CrossRefGoogle Scholar
  35. 35.
    Areshkin, D.A., Nikolić, B.K.: I-V curve signatures of nonequilibrium-driven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices. Phys. Rev. B 79, 205430 (2009) CrossRefGoogle Scholar
  36. 36.
    Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F, Met. Phys. 15, 851 (1985) CrossRefGoogle Scholar
  37. 37.
    Umerski, A.: Closed-form solutions to surface Green’s functions. Phys. Rev. B 55, 5266 (1997) CrossRefGoogle Scholar
  38. 38.
    Rocha, A.R., García-Suárez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006) CrossRefGoogle Scholar
  39. 39.
    Wimmer, M.: Quantum transport in nanostructures: From computational concepts to spintronics in graphene and magnetic tunnel junctions. Dissertation, University Regensburg (2009).
  40. 40.
    Tworzydło, J., Trauzettel, B., Titov, M., Rycerz, A., Beenakker, C.W.J.: Sub-poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006). Supplementary material is found in arXiv:cond-mat/0603315 CrossRefGoogle Scholar
  41. 41.
    Rycerz, A., Tworzydło, J., Beenakker, C.W.J.: Anomalously large conductance fluctuations in weakly disordered graphene. Europhys. Lett. 79, 57003 (2007) CrossRefGoogle Scholar
  42. 42.
    Metalidis, G., Bruno, P.: Green’s function technique for studying electron flow in two-dimensional mesoscopic samples. Phys. Rev. B 72, 235304 (2005) CrossRefGoogle Scholar
  43. 43.
    Todorov, T.N.: Tight-binding simulation of current-carrying nanostructures. J. Phys. Condens. Matter 14, 3049 (2002) CrossRefGoogle Scholar
  44. 44.
    Cresti, A., Farchioni, R., Grosso, G., Parravicini, G.P.: Keldysh-Green function formalism for current profiles in mesoscopic systems. Phys. Rev. B 68, 075306 (2003) CrossRefGoogle Scholar
  45. 45.
    Yazyev, O.: Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010) CrossRefGoogle Scholar
  46. 46.
    Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006) CrossRefGoogle Scholar
  47. 47.
    Xue, Y., Datta, S., Ratner, M.A.: First-principles based matrix Green’s function approach to molecular electronic devices: general formalism. Chem. Phys. 281, 151 (2002) CrossRefGoogle Scholar
  48. 48.
    Areshkin, D.A., Nikolić, B.K.: Electron density and transport in top-gated graphene nanoribbon devices: first-principles Green function algorithms for systems containing a large number of atoms. Phys. Rev. B 81, 155540 (2010) CrossRefGoogle Scholar
  49. 49.
    Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction. Oxford University Press, New York (2004) Google Scholar
  50. 50.
    Nazarov, Y.V., Blanter, Y.M.: Quantum Transport: Introduction to Nanoscience. Cambridge University Press, New York (2009) CrossRefGoogle Scholar
  51. 51.
    Büttiker, M.: Coherent and sequential tunneling in series barriers. IBM J. Res. Dev. 32, 63 (1988) CrossRefGoogle Scholar
  52. 52.
    D’Amato, J.L., Pastawski, H.M.: Conductance of a disordered linear chain including inelastic scattering events. Phys. Rev. B 41, 7411 (1990) CrossRefGoogle Scholar
  53. 53.
    Martin, J., Akerman, N., Ulbricht, G., Lohmann, T.: Observation of electron-hole puddles in graphene using a scanning single electron transistor. Nat. Phys. 4, 144 (2008) CrossRefGoogle Scholar
  54. 54.
    Zhang, Y., Brar, V.W., Girit, C., Zettl, A., Crommie, M.F.: Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722 (2009) CrossRefGoogle Scholar
  55. 55.
    Ishigami, M., Chen, J.H., Cullen, W.G., Fuhrer, M.S., Williams, E.D.: Atomic structure of graphene on SiO2. Nano Lett. 7, 1643 (2007) CrossRefGoogle Scholar
  56. 56.
    Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Obergfell, D., Roth, S., Girit, Ç., Zettl, A.: On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101 (2007) CrossRefGoogle Scholar
  57. 57.
    Levy, N., Burke, K.L., Meaker, S.A., Panlasigui, M., Zettl, A., Guinea, F., Castro Neto, A.H., Crommie, M.F.: Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544 (2010) CrossRefGoogle Scholar
  58. 58.
    Chen, J.H., Jang, C., Adam, S., Fuhrer, M.S., Williams, E.D., Ishigami, M.: Charged-impurity scattering in graphene. Nat. Phys. 4, 377 (2008) CrossRefGoogle Scholar
  59. 59.
    Chen, J.-H., Cullen, W.G., Jang, C., Fuhrer, M.S., Williams, E.D.: Defect scattering in graphene. Phys. Rev. Lett. 102, 236805 (2009) CrossRefGoogle Scholar
  60. 60.
    Han, M., Brant, J.C., Kim, P.: Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010) CrossRefGoogle Scholar
  61. 61.
    Peres, N.M.R.: Colloquium: the transport properties of graphene: an introduction. Rev. Mod. Phys. 82, 2673 (2010) CrossRefGoogle Scholar
  62. 62.
    Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407 (2011) CrossRefGoogle Scholar
  63. 63.
    Adam, S., Brouwer, P.W., Das Sarma, S.: Crossover from quantum to Boltzmann transport in graphene. Phys. Rev. B 79, 201404 (2009) CrossRefGoogle Scholar
  64. 64.
    Kłos, J.W., Zozoulenko, I.V.: Effect of short- and long range scattering on the conductivity of graphene: Boltzmann approach vs tight-binding calculations. Phys. Rev. B 82, 081414(R) (2010) Google Scholar
  65. 65.
    Pereira, V.M., Castro Neto, A.H., Peres, N.M.R.: Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009) CrossRefGoogle Scholar
  66. 66.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Pergamon, London (1986) Google Scholar
  67. 67.
    Kim, E.-A., Castro Neto, A.H.: Graphene as an electronic membrane. Europhys. Lett. 84, 57007 (2008) CrossRefGoogle Scholar
  68. 68.
    Vozmediano, M.A.H., Katsnelson, M.I., Guinea, F.: Gauge fields in graphene. Phys. Rep. 496, 109 (2010) MathSciNetCrossRefGoogle Scholar
  69. 69.
    Peierls, R.E.: Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 80, 763 (1933) CrossRefGoogle Scholar
  70. 70.
    Lundeberg, M.B., Folk, J.A.: Rippled graphene in an in-plane magnetic field: effects of a random vector potential. Phys. Rev. Lett. 105, 146804 (2010) CrossRefGoogle Scholar
  71. 71.
    Sols, F., Guinea, F., Castro Neto, A.H.: Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007) CrossRefGoogle Scholar
  72. 72.
    Vérges, J.A., Guinea, F., Chiappe, G., Louis, E.: Transport regimes in surface disordered graphene sheets. Phys. Rev. B 75, 085440 (2007) CrossRefGoogle Scholar
  73. 73.
    Evaldsson, M., Zozoulenko, I.V., Xu, H., Heinzel, T.: Edge disorder induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 78, 161407(R) (2008) CrossRefGoogle Scholar
  74. 74.
    Mucciolo, E.R., Castro Neto, A.H., Lewenkopf, C.H.: Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys. Rev. B 79, 075407 (2009) CrossRefGoogle Scholar
  75. 75.
    Brey, L., Fertig, H.A.: Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006) CrossRefGoogle Scholar
  76. 76.
    Zârbo, L.P., Nikolić, B.K.: Spatial distribution of local currents of massless Dirac fermions in quantum transport through graphene nanoribbons. Europhys. Lett. 80, 47001 (2007) CrossRefGoogle Scholar
  77. 77.
    Chang, P.-H., Nikolić, B.K.: Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Phys. Rev. B 86, 041406(R) (2012) Google Scholar
  78. 78.
    Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Tour, J.M., Zettl, A., Louie, S.G., Dai, H., Crommie, M.F.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616 (2011) CrossRefGoogle Scholar
  79. 79.
    Wakabayashi, K., Takane, Y., Sigrist, M.: Perfectly conducting channel and universality crossover in disordered graphene nanoribbons. Phys. Rev. Lett. 99, 036601 (2007) CrossRefGoogle Scholar
  80. 80.
    Wakabayashi, K., Takane, Y., Yamamoto, M., Sigrist, M.: Electronic transport properties of graphene nanoribbons. New J. Phys. 11, 095016 (2009) CrossRefGoogle Scholar
  81. 81.
    Lima, L.R.F., Pinheiro, F.A., Capaz, R.B., Lewenkopf, C.H., Mucciolo, E.R.: Effects of disorder range and electronic energy on the perfect transmission in graphene nanoribbons. Phys. Rev. B 86, 205111 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal FluminenseNiteroiBrazil
  2. 2.Department of PhysicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations