Journal of Computational Electronics

, Volume 12, Issue 1, pp 56–60 | Cite as

Empirical tight binding parameters for GaAs and MgO with explicit basis through DFT mapping

  • Yaohua Tan
  • Michael Povolotskyi
  • Tillmann Kubis
  • Yu He
  • Zhengping Jiang
  • Gerhard Klimeck
  • Timothy B. Boykin


The Empirical Tight Binding (ETB) method is widely used in atomistic device simulations. The reliability of such simulations depends very strongly on the choice of basis sets and the ETB parameters. The traditional way of obtaining the ETB parameters is by fitting to experiment data, or critical theoretical bandedges and symmetries rather than a foundational mapping. A further shortcoming of traditional ETB is the lack of an explicit basis. In this work, a DFT mapping process which constructs TB parameters and explicit basis from DFT calculations is developed. The method is applied to two materials: GaAs and MgO. Compared with the existing TB parameters, the GaAs parameters by DFT mapping show better agreement with the DFT results in bulk band structure calculations and lead to different indirect valleys when applied to nanowire calculations. The MgO TB parameters and TB basis functions are also obtained through the DFT mapping process.


DFT Tight binding Parameters Mapping GaAs MgO 


Acknowledgements computational resources operated by the Network for Computational Nanotechnology funded by NSF are utilized in this work. The research was funded by the Lockheed Martin Corporation and NSF (Award No. 1125017)


  1. 1.
    Krukau, A., Vydrov, O., Izmaylov, A., Scuseria, G.: J. Chem. Phys. 124, 224106 (2006) CrossRefGoogle Scholar
  2. 2.
    Hybertsen, M.S., Louie, S.G.: Phys. Rev. B 34, 5390 (1986) CrossRefGoogle Scholar
  3. 3.
    Ismail-Beigi, S., Louie, S.G.: Phys. Rev. Lett. 90, 076401 (2003) CrossRefGoogle Scholar
  4. 4.
    Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Rev. Mod. Phys. 64, 1045 (1992) CrossRefGoogle Scholar
  5. 5.
    Lake, R., Klimeck, G., Datta, S.: Phys. Rev. B 47, 6427 (1993) CrossRefGoogle Scholar
  6. 6.
    Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, C.R., Allmen, P.V.: Comput. Model. Eng. Sci. 3, 601 (2002) zbMATHGoogle Scholar
  7. 7.
    Boykin, T.B., Klimeck, G., Eriksson, M., Friesen, M., Coppersmith, S., Allmen, P., Oyafuso, F., Lee, S.: Appl. Phys. Lett. 84, 115 (2004) CrossRefGoogle Scholar
  8. 8.
    Jancu, J.-M., Scholz, R., Beltram, F., Bassani, F.: Phys. Rev. B 57, 6493 (1998) CrossRefGoogle Scholar
  9. 9.
    Boykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F.: Phys. Rev. B 66, 125207 (2002) CrossRefGoogle Scholar
  10. 10.
    Marzari, N., Vanderbilt, D.: Phys. Rev. B 56, 12847 (1997) CrossRefGoogle Scholar
  11. 11.
    Qian, X., Li, J., Qi, L., Wang, C.-Z., Chan, T.-L., Yao, Y.-X., Ho, K.-M., Yip, S.: Phys. Rev. B 78, 245112 (2008) CrossRefGoogle Scholar
  12. 12.
    Lu, W.C., Wang, C.Z., Chan, T.L., Ruedenberg, K., Ho, K.M.: Phys. Rev. B 70, 041101 (2004) CrossRefGoogle Scholar
  13. 13.
    Urban, A., Reese, M., Mrovec, M., Elsässer, C., Meyer, B.: Phys. Rev. B 84, 155119 (2011) CrossRefGoogle Scholar
  14. 14.
    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Nat. Mater. 3, 868 (2004) CrossRefGoogle Scholar
  15. 15.
    Kim, Y.S., Hummer, K., Kresse, G.: Phys. Rev. B 80, 035203 (2009) CrossRefGoogle Scholar
  16. 16.
    Cerdá, J., Soria, F.: Phys. Rev. B 61, 7965 (2000) CrossRefGoogle Scholar
  17. 17.
    Slater, J.C., Koster, G.F.: Phys. Rev. 94, 1498 (1954) zbMATHCrossRefGoogle Scholar
  18. 18.
    Vogl, A.V.P.P.: Phys. Rev. B 69, 233101 (2004) CrossRefGoogle Scholar
  19. 19.
    Rodwell, M., Frensley, M., Steiger, S., Chagarov, E., Lee, S., Ryu, H., Tan, Y., Wang, L., Law, J., Boykin, T., et al.: In: Device Research Conference (DRC), p. 149 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yaohua Tan
    • 1
  • Michael Povolotskyi
    • 1
  • Tillmann Kubis
    • 1
  • Yu He
    • 1
  • Zhengping Jiang
    • 1
  • Gerhard Klimeck
    • 1
  • Timothy B. Boykin
    • 2
  1. 1.School of Electrical and Computer Engineering, Network for Computational NanotechnologyPurdue UniversityWest LafayetteUSA
  2. 2.University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations