Journal of Computational Electronics

, Volume 11, Issue 4, pp 431–439

Modelling surface effects in nano wire optoelectronic devices

Article

Abstract

Recent research on optoelectronic devices focuses on nano structuring which is expected to improve the performance and reduce the production costs of light emitting diodes for lighting purposes and solar cells, for instance. Structuring on the sub-micrometer scale increases the surface with respect to the active volume so that surface effects become crucial for the device performance. In this work we demonstrate the computational modelling of nano structured optoelectronic devices to complement the experiment. The implementation of the simulation model considers surface effects in these devices using a true area box method discretization. The derived surface models are applied on the self-consistent simulation of nano wire quantum disk light emitting diodes. By the computational study we demonstrate that the surface physical effects are critical for the performance of nano-structured optoelectronic devices and that surface recombination can lead to a low efficiency.

Keywords

Optoelectronic device Nano structure Box method Surface effects Light emitting diode 

References

  1. 1.
    Andreev, Z., Römer, F., Witzigmann, B.: Simulation of InGaN quantum well LEDs with reduced internal polarization. Phys. Status Solidi A 209(3), 487–490 (2012) CrossRefGoogle Scholar
  2. 2.
    Bank, R., Rose, D., Fichtner, W.: Numerical methods for semiconductor device simulation. IEEE Trans. Electron Devices 30(9), 1031–1041 (1983) CrossRefGoogle Scholar
  3. 3.
    Bank, R.E., Bürgler, J.F., Fichtner, W., Smith, R.K.: Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math. 58(1), 185–202 (1990) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Baraff, G.: Semiclassical description of electron transport in semiconductor quantum-well devices. Phys. Rev. B 55(16), 10,745 (1997) CrossRefGoogle Scholar
  5. 5.
    Baur, J., Baumann, F., Peter, M., Engl, K., Zehnder, U., Off, J., Kuemmler, V., Kirsch, M., Strauss, J., Wirth, R., Streubel, K., Hahn, B.: Status of high efficiency and high power ThinGaN®-LED development. Phys. Status Solidi C 6(S2), S905–S908 (2009) CrossRefGoogle Scholar
  6. 6.
    Böcklin, C., Veprek, R.G., Steiger, S., Witzigmann, B.: Computational study of an InGaN/GaN nanocolumn light-emitting diode. Phys. Rev. B 81, 155,306 (2010) CrossRefGoogle Scholar
  7. 7.
    Borgström, M.T., Wallentin, J., Heurlin, M., Stefan, F., Wickert, P., Leene, J., Magnusson, M.H., Deppert, K., Samuelson, L.: Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011) CrossRefGoogle Scholar
  8. 8.
    Bürgler, J., Bank, R., Fichtner, W., Smith, R.: A new discretization scheme for the semiconductor current continuity equations. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 8(5), 479–489 (1989) CrossRefGoogle Scholar
  9. 9.
    Chuang, S., Chang, C.: K⋅P method for strained wurtzite semiconductors. Phys. Rev. B 54(4), 2491–2504 (1996) CrossRefGoogle Scholar
  10. 10.
    Darling, R.: Defect-state occupation, Fermi-level pinning, and illumination effects on free semiconductor surfaces. Phys. Rev. B 43(5), 4071–4083 (1991) CrossRefGoogle Scholar
  11. 11.
    Deppner, M., Bjelica, M., Römer, F., Witzigmann, B.: Computational study of multi-color InGaN/GaN nanowire LEDs with continuously varied indium composition. In: Proceedings of SPIE, pp. 82,550G–82,550G-11 (2012) Google Scholar
  12. 12.
    Forniés, E., Zaldo, C., Albella, J.: Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance. Sol. Energy Mater. Sol. Cells 87(1–4), 583–593 (2005) Google Scholar
  13. 13.
    Garretón, G.: A hybrid approach to 2D and 3D mesh generation for semiconductor device simulation. Ph.D. Thesis, ETH Zürich (1999) Google Scholar
  14. 14.
    Gunawan, O., Wang, K., Fallahazad, B., Zhang, Y., Tutuc, E., Guha, S.: High performance wire-array silicon solar cells (August 2010), 307–312 (2011) Google Scholar
  15. 15.
    Guo, W., Banerjee, A., Bhattacharya, P., Ooi, B.S.: InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon. Appl. Phys. Lett. 98(19), 193,102 (2011) CrossRefGoogle Scholar
  16. 16.
    Hjelle, O., Dæhlen, M.: Triangulations and Applications. Springer, Berlin (2006) MATHGoogle Scholar
  17. 17.
    Kerkhoven, T.: On the Scharfetter-Gummel box method. Simul. Semicond. Devices Process. 5, 237–240 (1993) CrossRefGoogle Scholar
  18. 18.
    Kočan, M., Rizzi, A., Lüth, H., Keller, S., Mishra, U.: Surface potential at as-grown GaN(0001) MBE layers. Phys. Status Solidi B 234(3), 773–777 (2002) CrossRefGoogle Scholar
  19. 19.
    Luttinger, J., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 173(1950), 869 (1955) CrossRefGoogle Scholar
  20. 20.
    Park, S.H., Chuang, S.L.: Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. B 59(7), 4725–4737 (1999) CrossRefGoogle Scholar
  21. 21.
    Rafferty, C., Pinto, M., Dutton, R.: Iterative methods in semiconductor device simulation. IEEE Trans. Electron Devices 32(10), 2018–2027 (1985) CrossRefGoogle Scholar
  22. 22.
    Reshchikov, M.A., Sabuktagin, S., Johnstone, D.K., Morkoç, H.: Transient photovoltage in GaN as measured by atomic force microscope tip. J. Appl. Phys. 96(5), 2556 (2004) CrossRefGoogle Scholar
  23. 23.
    Sanford, N.A., Blanchard, P.T., Bertness, K.A., Mansfield, L., Schlager, J.B., Sanders, A.W., Roshko, A., Burton, B.B., George, S.M.: Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy. J. Appl. Phys. 107(3), 034,318 (2010) CrossRefGoogle Scholar
  24. 24.
    Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16(1), 64–77 (1969) CrossRefGoogle Scholar
  25. 25.
    Steiger, S., Veprek, R.G., Witzigmann, B.: Unified simulation of transport and luminescence in optoelectronic nanostructures. J. Comput. Electron. 7(4), 509–520 (2008) CrossRefGoogle Scholar
  26. 26.
    Trellakis, A., Galick, A., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures. J. Appl. Phys. 81(12), 7880 (1997) CrossRefGoogle Scholar
  27. 27.
    Veprek, R.G., Steiger, S., Witzigmann, B.: Reliable kp band structure calculation for nanostructures using finite elements. J. Comput. Electron. 7(4), 521–529 (2008) CrossRefGoogle Scholar
  28. 28.
    Waag, A., Wang, X., Fündling, S., Ledig, J., Erenburg, M., Neumann, R., Al Suleiman, M., Merzsch, S., Wei, J., Li, S., Wehmann, H.H., Bergbauer, W., Straßburg, M., Trampert, A., Jahn, U., Riechert, H.: The nanorod approach: GaN NanoLEDs for solid state lighting. Phys. Status Solidi C 8(7–8), 2296–2301 (2011) CrossRefGoogle Scholar
  29. 29.
    Yu, S., Römer, F., Witzigmann, B.: Analysis of surface recombination in nanowire array solar cells. J. Photon. Energy 2(1), 028002 (2012) Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Computational Electronics and Photonics GroupUniversität KasselKasselGermany

Personalised recommendations