Advertisement

Journal of Computational Electronics

, Volume 11, Issue 3, pp 218–224 | Cite as

A multi scale modeling approach to non-radiative multi phonon transitions at oxide defects in MOS structures

  • F. SchanovskyEmail author
  • O. Baumgartner
  • V. Sverdlov
  • T. Grasser
Article

Abstract

We discuss a novel approach to predict non-radiative multi phonon (NMP) transition rates for oxide defects in semiconductor devices in the context of device reliability. In accordance with NMP theory, the influence of the atomic vibration on the electronic transition is assumed to be fully described by the line shape function. This line shape is calculated from density functional theory for a given defect structure and then combined with the carrier spectrum from a non-equilibrium Green’s function model of the semiconductor device. Hole capture rates at different temperatures and bias conditions are computed for two well-studied defect structures, the oxygen vacancy and the hydrogen bridge, at different positions in the oxide of an MOS structure.

Keywords

Bias temperature instabilities BTI Random telegraph noise RTN Non-radiative multi phonon theory NMP Temperature activated hole capture Density functional theory DFT Multi scale modeling 

Notes

Acknowledgement

This work has received funding from the EC’s FP7 grant agreement NMP.2010.2.5-1 (MORDRED).

References

  1. 1.
    Jeppson, K., Svensson, C.: J. Appl. Phys. 48(5), 2004 (1977) CrossRefGoogle Scholar
  2. 2.
    Schroder, D.K.: Microelectron. Reliab. 47, 841 (2007) CrossRefGoogle Scholar
  3. 3.
    Grasser, T., Kaczer, B., Goes, W., Aichinger, T., Hehenberger, P., Nelhiebel, M.: In: Proc. Intl. Rel. Phys. Symp., pp. 33–44 (2009) Google Scholar
  4. 4.
    Grasser, T., Kaczer, B., Gös, W., Reisinger, H., Aichinger, T., Hehenberger, P., Wagner, P.J., Schanovsky, F., Franco, J., Toledano-Luque, M., Nelhiebel, M.: IEEE Trans. Electron Devices 58(11), 3652 (2011) CrossRefGoogle Scholar
  5. 5.
    Kirton, M., Uren, M.: Appl. Phys. Lett. 48, 1270 (1986) CrossRefGoogle Scholar
  6. 6.
    Grasser, T., Reisinger, H., Wagner, P.J., Kaczer, B.: In: Proc. Intl. Rel. Phys. Symp., pp. 16–25 (2010) Google Scholar
  7. 7.
    Fleetwood, D., Xiong, H., Lu, Z.Y., Nicklaw, C., Felix, J., Schrimpf, R., Pantelides, S.: IEEE Trans. Nucl. Sci. 49(6), 2674 (2002) CrossRefGoogle Scholar
  8. 8.
    Kaczer, B., Grasser, T., Martin-Martinez, J., Simoen, E., Aoulaiche, M., Roussel, P., Groeseneken, G.: In: Proc. Intl. Rel. Phys. Symp., pp. 55–60 (2009) Google Scholar
  9. 9.
    Wagner, P., Aichinger, T., Grasser, T., Nelhiebel, M., Vandamme, L.: In: Proc. Intl. Conf. Noise Fluct., pp. 621–624 (2009) Google Scholar
  10. 10.
    Blöchl, P.E., Stathis, J.H.: Phys. Rev. Lett. 83(2), 372 (1999) CrossRefGoogle Scholar
  11. 11.
    Blöchl, P.E.: Phys. Rev. B 62(10), 6158 (2000) CrossRefGoogle Scholar
  12. 12.
    Huang, K., Rhys, A.: Proc. R. Soc. A 204, 406 (1950) zbMATHCrossRefGoogle Scholar
  13. 13.
    Henry, C.H., Lang, D.V.: Phys. Rev. B 15(15), 989 (1977) CrossRefGoogle Scholar
  14. 14.
    Makram-Ebeid, S., Lannoo, M.: Phys. Rev. B 25(10), 6406 (1982) CrossRefGoogle Scholar
  15. 15.
    Palma, A., Godoy, A., Jemènez-Tejada, J.A., Carceller, J.E., Lòpez-Villanueva, J.A.: Phys. Rev. B 56(15), 9565 (1997) CrossRefGoogle Scholar
  16. 16.
    Garetto, D., Randiamihaja, Y.M., Rideau, D., Dornel, E., Clark, W.F., Schmid, A., Huard, V., Jaouen, H., Leblebici, Y.: In: Proc. Intl. Worksh. Comput. Electron., pp. 327–330 (2010) Google Scholar
  17. 17.
    Zheng, J.H., Tan, H.S., Ng, S.C.: J. Phys., Condens. Matter 6, 1695 (1994) CrossRefGoogle Scholar
  18. 18.
    Grasser, T., Reisinger, H., Goes, W., Aichinger, T., Hehenberger, P., Wagner, P., Nelhiebel, M., Franco, J., Kaczer, B.: In: Proc. Intl. Electron Devices Meeting, pp. 729–732 (2009) Google Scholar
  19. 19.
    Reisinger, H., Grasser, T., Schlünder, C., Gustin, W.: In: Proc. Intl. Rel. Phys. Symp., pp. 7–15 (2010) Google Scholar
  20. 20.
    Grasser, T., Reisinger, H., Wagner, P., Kaczer, B.: Phys. Rev. B 82, 245318 (2010) CrossRefGoogle Scholar
  21. 21.
    Schanovsky, F., Goes, W., Grasser, T.: J. Comput. Electron. 9, 135 (2010) CrossRefGoogle Scholar
  22. 22.
    Schanovsky, F.: In: Proc. Intl. Worksh. Comput. Electron., pp. 163–166 (2010) Google Scholar
  23. 23.
    Schanovsky, F., Goes, W., Grasser, T.: J. Vac. Sci. Technol. B 29, 01A201 (2011) CrossRefGoogle Scholar
  24. 24.
    Schanovsky, F., Baumgartner, O., Grasser, T.: In: Proc. Simu. Semicond. Proc. Dev., pp. 15–18 (2011) Google Scholar
  25. 25.
    Schenk, A.: J. Appl. Phys. 71, 3339 (1992) CrossRefGoogle Scholar
  26. 26.
    Zapol, B.: Chem. Phys. Lett. 93(6), 549 (1982) CrossRefGoogle Scholar
  27. 27.
    Schmidt, P.P.: Mol. Phys. 108, 1513 (2010) CrossRefGoogle Scholar
  28. 28.
    Abakumov, V., Perel, V., Yassievich, I.: Nonradiative Recombination in Semiconductors. North-Holland, Amsterdam (1991) Google Scholar
  29. 29.
    Grasser, T.: Microelectron. Reliab. 52(1), 39 (2011). doi: 10.1016/j.microrel.2011.09.002 Google Scholar
  30. 30.
    Baumgartner, O., Karner, M., Kosina, H.: In: Proc. Simu. Semicond. Proc. Dev., pp. 353–356 (2008). doi: 10.1109/SISPAD.2008.4648310 Google Scholar
  31. 31.
    Kresse, G., Furthmüller, J.: Phys. Rev. B 54(11), 11169 (1996) CrossRefGoogle Scholar
  32. 32.
    Kresse, G., Joubert, D.: Phys. Rev. B 59, 1758 (1999) CrossRefGoogle Scholar
  33. 33.
    Rudra, J.K., Fowler, W.B.: Phys. Rev. B 35(15), 8223 (1987) CrossRefGoogle Scholar
  34. 34.
    Mysovsky, A.S., Sushko, P.V., Mukhopadhyay, S., Edwards, A.H., Shluger, A.L.: Phys. Rev. B 69(8), 085202 (2004) CrossRefGoogle Scholar
  35. 35.
    Drabold, D.A., Estreicher, S.K. (eds.): Theory of Defects in Semiconductors. Springer, Berlin (2010) Google Scholar
  36. 36.
    Karner, M., Gehring, A., Holzer, S., Pourfath, M., Wagner, M., Goes, W., Vasicek, M., Baumgartner, O., Kernstock, C., Schnass, K., Zeiler, G., Grasser, T., Kosina, H., Selberherr, S.: J. Comput. Electron. 6, 179 (2007). doi: 10.1007/s10825-006-0077-7 CrossRefGoogle Scholar
  37. 37.
    Shockley, W., Read, W.T.: Phys. Rev. 87, 835 (1952) zbMATHCrossRefGoogle Scholar
  38. 38.
    Schenk, A.: Solid-State Electron. 35, 1585 (1992) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2012

Authors and Affiliations

  • F. Schanovsky
    • 1
    Email author
  • O. Baumgartner
    • 1
  • V. Sverdlov
    • 1
  • T. Grasser
    • 1
  1. 1.Institute for MicroelectronicsTU WienWienAustria

Personalised recommendations