Journal of Computational Electronics

, Volume 11, Issue 1, pp 118–128

Monte Carlo study of self-heating in nanoscale devices

  • Toufik Sadi
  • Robert W. Kelsall
  • Neil J. Pilgrim
  • Jean-Luc Thobel
  • François Dessenne
Article

Abstract

Progress in device miniaturization combined with the increase in integrated circuit packing density, as described by Moore’s law, have been accompanied by an exponential increase in on-chip heat generation. In this context, there is an increasing demand for reliable electrothermal modeling techniques that accurately account for self-heating and allow a better understanding of thermal transport at the nanoscale. This paper presents a theoretical demonstration of the electrothermal phenomena in a variety of nanodevices, ranging from conventional Si- and III-V-based field-effect transistors (FETs) to nanowire devices. Simulation work relies on a very well-established Monte Carlo simulator considering self-heating using phonon statistics. The electrothermal simulator self-consistently couples a three-dimensional (3D) electronic trajectory simulation with the solution of the heat diffusion equation. The Monte Carlo technique is very suitable for the simulation of electronic transport in nanoscale semiconductor devices, as it is free from low-field near-equilibrium approximations. In addition, the method is well-suited for electrothermal modeling, since it allows a detailed microscopic description of electron-phonon scattering which provides an inherent and direct prediction of the spatial distribution of heat generation. The paper is divided into three parts. The first part includes a description of the computational approach to simulate electrothermal transport in FETs. The advantages of using the simulation method are demonstrated by presenting full results from the simulation of an InGaAs-channel high-electron mobility transistor (HEMT). The second part concerns electrothermal transport in conventional field-effect devices such as Si and III-V HEMTs. An investigation of self-heating effects in high-power devices, such as AlGaN/GaN HEMTs, and relevant Si-based FETs, e.g. Si/SiGe HEMTs, is presented. This part demonstrates how the analysis of self-heating effects may help us in understanding the electronic and thermal properties of nanoscale FETs. The third part of the paper consists of studying the electrothermal behavior of advanced structures. In this case, charge transport and self-heating effects are investigated in metal-insulator-semiconductor FETs (MISFETs) with a single InAs nanowire channel. Despite low heat dissipation, simulations predict significant local temperatures, due to the high current density levels and the poor thermal management in these nanowire structures.

Keywords

Self-heating Electron transport Thermal transport Electrothermal modeling Monte Carlo Nanoscale semiconductor devices Si/III-V heterostructure FETs Nanowire MISFETs 

References

  1. 1.
    Moore, G.E.: Electron. Mag. 38(8), 4 (1965) Google Scholar
  2. 2.
    Pop, E., Sinha, S., Goodson, K.E.: Proc. IEEE 94(8), 1587 (2006) CrossRefGoogle Scholar
  3. 3.
    Ju, Y.S., Goodson, K.E.: Appl. Phys. Lett. 74, 3005 (1999) CrossRefGoogle Scholar
  4. 4.
    Lugli, P., Jacoboni, C., Reggiani, L., Kocevar, P.: Appl. Phys. Lett. 50(18), 1251 (1987) CrossRefGoogle Scholar
  5. 5.
    Liu, W., Balandin, A.A.: J. Appl. Phys. 97, 073710 (2005) CrossRefGoogle Scholar
  6. 6.
    Abeles, B., Beers, D.S., Cody, G.D., Dismukes, J.P.: Phys. Rev. 125(1), 44 (1962) CrossRefGoogle Scholar
  7. 7.
    Anholt, R.: Solid-State Electron. 42(5), 849 (1998) CrossRefGoogle Scholar
  8. 8.
    Tsang-Ping, C.S., Snowden, C.M., Barry, D.M.: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 15(3), 308 (1996) CrossRefGoogle Scholar
  9. 9.
    Wachutka, G.K.: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9(11), 1141 (1990) CrossRefGoogle Scholar
  10. 10.
    Ghione, G., Naldi, C.U.: In: IEEE Proc. Int. Elec. Dev. Meeting (IEDM) ’89, pp. 147–150 (1989) Google Scholar
  11. 11.
    Quay, R., Reuter, R., Grasser, T., Selberherr, S.: In: Proc. Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications (EDMO) ’99, pp. 87–92 (1999) CrossRefGoogle Scholar
  12. 12.
    Moglestue, C., Buot, F.A., Anderson, W.T.: J. Appl. Phys. 78(4), 2343 (1995) CrossRefGoogle Scholar
  13. 13.
    Yoder, P., Fichtner, W.: In: Simulation of Semiconductor Processes and Devices 1998, pp. 307–310 (1998) Google Scholar
  14. 14.
    Kamoua, R.: IEEE Trans. Microw. Theory Tech. 46(10), 1376 (1998) CrossRefGoogle Scholar
  15. 15.
    Ashok, A., Vasileska, D., Hartin, O.L., Goodnick, S.M.: IEEE Trans. Electron Devices 57, 562 (2010) CrossRefGoogle Scholar
  16. 16.
    Muscato, O., Stefano, V.D.: J. Phys. Conf. Ser. 193, 012002 (2009) CrossRefGoogle Scholar
  17. 17.
    Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, Berlin (1989) CrossRefGoogle Scholar
  18. 18.
    Brennan, K.F., Bellotti, E., Farahmand, M., Haralson, J. II, Ruden, P.P., Albrecht, J.D., Sutandi, A.: Solid-State Electron. 44(2), 195 (2000) CrossRefGoogle Scholar
  19. 19.
    Albrecht, J.D., Ruden, P.P., Binari, S.C., Ancona, M.G.: IEEE Trans. Electron Devices 47(11), 2031 (2000) CrossRefGoogle Scholar
  20. 20.
    Sadi, T., Kelsall, R., Pilgrim, N.: IEEE Trans. Electron Devices 53(8), 1768 (2006) CrossRefGoogle Scholar
  21. 21.
    Pilgrim, N.J., Batty, W., Kelsall, R.W.: J. Comput. Electron. 2, 207 (2003) CrossRefGoogle Scholar
  22. 22.
    Batty, W., Panks, A., Johnson, R., Snowden, C.: IEEE Trans. Microw. Theory Tech. 47(12), 2574 (1999) CrossRefGoogle Scholar
  23. 23.
    Batty, W., Christoffersen, C., Pranks, A., David, S., Snowden, C., Steer, M.: IEEE Trans. Compon. Packag. Technol. 24(4), 566 (2001) CrossRefGoogle Scholar
  24. 24.
    Sadi, T., Kelsall, R.W., Pilgrim, N.J.: IEEE Trans. Electron Devices 54(2), 332 (2007) CrossRefGoogle Scholar
  25. 25.
    Sadi, T., Kelsall, R.W.: J. Appl. Phys. 107(6), 064506 (2010) CrossRefGoogle Scholar
  26. 26.
    Sadi, T., Kelsall, R.W., Pilgrim, N.J.: IEEE Trans. Electron Devices 53(12), 2892 (2006) CrossRefGoogle Scholar
  27. 27.
    Sadi, T., Kelsall, R.W.: IEEE Trans. Electron Devices 55(4), 945 (2008) CrossRefGoogle Scholar
  28. 28.
    Sadi, T., Kelsall, R.W., Pilgrim, N.J.: J. Comput. Electron. 6, 35 (2007) CrossRefGoogle Scholar
  29. 29.
    Sadi, T., Thobel, J.L., Dessenne, F.: J. Appl. Phys. 108(8), 084506 (2010) CrossRefGoogle Scholar
  30. 30.
    Sadi, T., Thobel, J.L., Dessenne, F.: In: Proc. IEEE 15th IEEE International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) ’10, pp. 107–110 (2010) CrossRefGoogle Scholar
  31. 31.
    Sadi, T., Thobel, J.L., Dessenne, F., Dalle, C.: In: Proc. IEEE 14th IEEE International Workshop on Computational Electronics (IWCE) ’10, pp. 1–4 (2010) Google Scholar
  32. 32.
    Sadi, T., Thobel, J.L.: Int. J. Numer. Model. 23(3), 200 (2010) MATHGoogle Scholar
  33. 33.
    Sadi, T., Thobel, J.L.: J. Phys. Conf. Ser. 193, 012017 (2009) CrossRefGoogle Scholar
  34. 34.
    Sadi, T., Thobel, J.L.: J. Appl. Phys. 106(8), 083709 (2009) CrossRefGoogle Scholar
  35. 35.
    Sadi, T., Dessenne, F., Thobel, J.L.: J. Appl. Phys. 105(5), 053707 (2009) CrossRefGoogle Scholar
  36. 36.
    Gerstmayr, J., Schöberl, J.: Multibody Syst. Dyn. 15(4), 305 (2006) CrossRefGoogle Scholar
  37. 37.
    Sadi, T., Kelsall, R.W.: IEEE Electron Device Lett. 28(9), 787 (2007) CrossRefGoogle Scholar
  38. 38.
    Lindefelt, U.: J. Appl. Phys. 75(2), 942 (1994) CrossRefGoogle Scholar
  39. 39.
    Do, Q.T., Blekker, K., Regolin, I., Prost, W., Tegude, F.J.: IEEE Electron Device Lett. 28(8), 682 (2007) CrossRefGoogle Scholar
  40. 40.
    Pop, E., Mann, D., Cao, J., Wang, Q., Goodson, K.E., Dai, H.J.: Phys. Rev. Lett. 95, 155505 (2005) CrossRefGoogle Scholar
  41. 41.
    Pop, E., Mann, D., Reifenberg, J., Goodson, K.E., Dai, H.J.: In: Tech. Dig. IEEE Int. Electron Devices Meeting (IEDM) ’05, pp. 253–256 (2005) Google Scholar
  42. 42.
    Schwierz, F.: Nat. Nanotechnol. 5, 487 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2012

Authors and Affiliations

  • Toufik Sadi
    • 1
  • Robert W. Kelsall
    • 2
  • Neil J. Pilgrim
    • 2
  • Jean-Luc Thobel
    • 3
  • François Dessenne
    • 3
  1. 1.Department of Biomedical Engineering and Computational ScienceAalto UniversityAaltoFinland
  2. 2.Institute of Microwaves and Photonics, School of Electronic and Electrical EngineeringThe University of LeedsLeedsUK
  3. 3.IEMN UMR-CNRS 8520Université Lille 1Villeneuve d’Ascq CédexFrance

Personalised recommendations