Advertisement

Journal of Computational Electronics

, Volume 11, Issue 1, pp 22–28 | Cite as

Calculation of phonon spectrum and thermal properties in suspended 〈100〉 In X Ga1−X As nanowires

  • Mehdi Salmani-JelodarEmail author
  • Abhijeet Paul
  • Timothy Boykin
  • Gerhard Klimeck
Article

Abstract

The phonon spectra in zinc blende InAs, GaAs and their ternary alloy nanowires (NWs) are computed using an enhanced valence force field (EVFF) model. The physical and thermal properties of these nanowires such as sound velocity, elastic constants, specific heat (C v ), phonon density of states, phonon modes, and the ballistic thermal conductance are explored. The calculated transverse and longitudinal sound velocities in these NWs are ∼25% and 20% smaller compared to the bulk velocities, respectively. The C v for NWs are about twice as large as the bulk values due to higher surface to volume ratio (SVR) and strong phonon confinement in the nanostructures. The temperature dependent C v for InAs and GaAs nanowires show a cross-over at 180°K due to higher phonon density in InAs nanowires at lower temperatures. With the phonon spectra and Landauer’s model the ballistic thermal conductance is reported for these III–V NWs. The results in this work demonstrate the potential to engineer the thermal behavior of III–V NWs.

Keywords

Phonon dispersion relation Indium gallium arsenide Nanowire Specific heat Thermal conductance 

Notes

Acknowledgements

The authors would like to thank Dr. Sebastian Steiger, Dr. Michael Povolotskyi and Dr. Denis Areshkin for phonon dispersion calculation code, NEMO5, and useful discussions. This work used nanoHUB.org computational resources operated by the Network for Computational Nanotechnology funded by the National Science Foundation (NSF). Financial support from MSD Focus Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation (SRC) entity and by the Nanoelectronics Research Initiative (NRI) through the Midwest Institute for Nanoelectronics Discovery (MIND) are also acknowledged.

References

  1. 1.
    Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C., et al.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001) CrossRefGoogle Scholar
  2. 2.
    Persson, A., Björk, M., Jeppesen, S., Wagner, J., Wallenberg, L., Samuelson, L.: InAs-x p x nanowires for device engineering. Nano Lett. 6(3), 403–407 (2006) CrossRefGoogle Scholar
  3. 3.
    Lundstrom, M.: Near-Equilibrium Transport: Fundamentals and Applications. World Scientific, Singapore (2011) Google Scholar
  4. 4.
    Paul, A., Luisier, M., Klimeck, G.: Modified valence force field approach for phonon dispersion: from zinc-blende bulk to nanowires. J. Comput. Electron. (2010) Google Scholar
  5. 5.
    Li, D., Wu, Y., Fan, R., Yang, P., Majumdar, A.: Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003) CrossRefGoogle Scholar
  6. 6.
    Persson, A., Koh, Y., Cahill, D., Samuelson, L., Linke, H.: Thermal conductance of InAs nanowire composites. Nano Lett. 9(12), 4484–4488 (2009) CrossRefGoogle Scholar
  7. 7.
    Zhou, F., Moore, A., Bolinsson, J., Persson, A., Fröberg, L., Pettes, M., Kong, H., Rabenberg, L., Caroff, P., Stewart, D., et al.: Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. Phys. Rev. B 83(20), 205416 (2011) CrossRefGoogle Scholar
  8. 8.
    Paul, A., Luisier, M., Klimeck, G.: Atomistic modeling of the phonon dispersion and lattice properties of free-standing (100) Si nanowires. In: 2010 14th International Workshop on Computational Electronics (IWCE), pp. 1–4. IEEE Press, New York (2010) CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Cao, J., Xiao, Y., Yan, X.: Phonon spectrum and specific heat of silicon nanowires. J. Appl. Phys. 102, 104303 (2007) CrossRefGoogle Scholar
  10. 10.
    Mingo, N., Broido, D.: Lattice thermal conductivity crossovers in semiconductor nanowires. Phys. Rev. Lett. 93(24), 246106 (2004) CrossRefGoogle Scholar
  11. 11.
    Carrete, J., Longo, R., Gallego, L.: Prediction of phonon thermal transport in thin GaAs, InAs and InP nanowires by molecular dynamics simulations: influence of the interatomic potential. Nanotechnology 22, 185704 (2011) CrossRefGoogle Scholar
  12. 12.
    Sui, Z., Herman, I.: Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures. Phys. Rev. B 48(24), 17938 (1993) CrossRefGoogle Scholar
  13. 13.
    Fu, H., Ozoliņš, V., Zunger, A.: Phonons in gap quantum dots. Phys. Rev. B 59(4), 2881 (1999) CrossRefGoogle Scholar
  14. 14.
    Keating, P.: Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145(2), 637 (1966) CrossRefGoogle Scholar
  15. 15.
    Steiger, S., Salmani-Jelodar, M., Areshkin, D., Paul, A., Kubis, T., Povolotskyi, M., Park, H., Klimeck, G.: Enhanced valence force field model for the lattice properties of gallium arsenide. Phys. Rev. B 84(15), 155204 (2011) CrossRefGoogle Scholar
  16. 16.
    Peelaers, H., Partoens, B., Peeters, F.: Phonon band structure of Si nanowires: a stability analysis. Nano Lett. 9(1), 107–111 (2008) CrossRefGoogle Scholar
  17. 17.
    Markussen, T., Jauho, A., Brandbyge, M.: Heat conductance is strongly anisotropic for pristine silicon nanowires. Nano Lett. 8(11), 3771–3775 (2008) CrossRefGoogle Scholar
  18. 18.
    Grundmann, M.: The Physics of Semiconductors: An Introduction Including Devices and Nanophysics. Springer, Berlin (2006) Google Scholar
  19. 19.
    Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1(3), 223–231 (1957) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lazarenkova, O., Von Allmen, P., Oyafuso, F., Lee, S., Klimeck, G.: An atomistic model for the simulation of acoustic phonons, strain distribution, and grüneisen coefficients in zinc-blende semiconductors. Superlattices Microstruct. 34(3), 553–556 (2003) CrossRefGoogle Scholar
  21. 21.
    Lee, S., Lazarenkova, O., Von Allmen, P., Oyafuso, F., Klimeck, G.: Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots. Phys. Rev. B 70(12), 125307 (2004) CrossRefGoogle Scholar
  22. 22.
    Kane, E.: Phonon spectra of diamond and zinc-blende semiconductors. Phys. Rev. B 31(12), 7865 (1985) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mingo, N., Yang, L., Li, D., Majumdar, A.: Predicting the thermal conductivity of Si and Ge nanowires. Nano Lett. 3(12), 1713–1716 (2003) CrossRefGoogle Scholar
  24. 24.
    Cleland, A.: Foundations of Nanomechanics: From Solid-State Theory to Device Applications. Springer, Berlin (2003) Google Scholar
  25. 25.
    Salmani-Jelodar, M., Steiger, S., Paul, A., Klimeck, G.: Model development for lattice properties of gallium arsenide using parallel genetic algorithm. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 2429–2435. IEEE Press, New York (2011) CrossRefGoogle Scholar
  26. 26.
    Strauch, D., Dorner, B.: Phonon dispersion in GaAs. J. Phys., Condens. Matter 2, 1457 (1990) CrossRefGoogle Scholar
  27. 27.
    Orlova, N.: X-ray thermal diffuse scattering measurements of the [100] and [111] phonon dispersion curves of indium arsenide. Phys. Status Solidi B 93(2), 503–509 (1979) CrossRefGoogle Scholar
  28. 28.
    Thonhauser, T., Mahan, G.: Phonon modes in Si [111] nanowires. Phys. Rev. B 69(7), 075213 (2004) CrossRefGoogle Scholar
  29. 29.
    Steiger, S., Povolotskyi, M., Park, H., Kubis, T., Klimeck, G., et al.: Nemo5: a parallel multiscale nanoelectronics modeling tool. IEEE Trans. Nanotechnol. 10(6), 1464–1474 (2011) CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Collaboration: Authors and Editors of the LB Volumes III/17A-22A-41A1b: Gallium arsenide (GaAs), debye temperature, density, heat capacity, melting point. In: Madelung, M.S.O., Rössler, U. (eds.) SpringerMaterials—The Landolt-Börnstein Database. Group IV Elements, IV–IV and III–V Compounds, vol. 41A1b (2011). Part b—Electronic, Transport, Optical and Other Properties. [Online]. Available: http://dx.doi.org/10.1007/10832182_226 Google Scholar
  32. 32.
    Collaboration: Authors and Editors of the LB Volumes III/17A-22A-41A1b: Indium arsenide (InAs), debye temperature, density, hardness, melting point. In: Madelung, M.S.O., Rössler, U. (eds.) SpringerMaterials—The Landolt-Börnstein Database (2011). [Online]. Available: http://dx.doi.org/10.1007/10832182_362 Google Scholar

Copyright information

© Springer Science+Business Media LLC 2012

Authors and Affiliations

  • Mehdi Salmani-Jelodar
    • 1
    Email author
  • Abhijeet Paul
    • 1
  • Timothy Boykin
    • 2
  • Gerhard Klimeck
    • 1
  1. 1.School of Electrical and Computer Engineering and Network for Computational NanotechnologyPurdue UniversityWest LafayetteUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations