Journal of Computational Electronics

, Volume 11, Issue 1, pp 78–92 | Cite as

First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes

  • Branislav K. Nikolić
  • Kamal K. Saha
  • Troels Markussen
  • Kristian S. Thygesen
Article

Abstract

We overview the nonequilibrium Green function combined with density functional theory (NEGF-DFT) approach to modeling of independent electronic and phononic quantum transport in nanoscale thermoelectrics with examples focused on a new class of devices where a single organic molecule is attached to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from the ZGNR electrodes, so that their overlap within the molecular region generates a peak in the electronic transmission around the Fermi energy of the device. Additionally, the spatial symmetry properties of the transverse propagating states in the semi-infinite ZGNR electrodes suppress hole-like contributions to the thermopower. Thus optimized thermopower, together with diminished phonon thermal conductance in a ZGNR|molecule|ZGNR inhomogeneous heterojunctions, yields the thermoelectric figure of merit ZT≃0.4 at room temperature with maximum ZT≃3 reached at very low temperatures T≃10 K (so that the latter feature could be exploited for thermoelectric cooling of, e.g., infrared sensors). The reliance on evanescent mode transport and symmetry of propagating states in the electrodes makes the electronic-transport-determined power factor in this class of devices largely insensitive to the type of sufficiently short organic molecule, which we demonstrate by showing that both 18-annulene and C10 molecule sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can search for molecules that will further reduce the phonon thermal conductance (in the denominator of ZT) while keeping the electronic power factor (in the nominator of ZT) optimized. We also show how the often employed Brenner empirical interatomic potential for hydrocarbon systems fails to describe phonon transport in our single-molecule nanojunctions when contrasted with first-principles results obtained via NEGF-DFT methodology.

Keywords

Thermoelectrics Molecular electronics Graphene nanoribbons First-principles quantum transport 

References

  1. 1.
    Vining, C.B.: An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83 (2009) CrossRefGoogle Scholar
  2. 2.
    Tritt, T.M.: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011) CrossRefGoogle Scholar
  3. 3.
    Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008) CrossRefGoogle Scholar
  4. 4.
    Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009) CrossRefGoogle Scholar
  5. 5.
    Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. USA 93, 7436 (1996) CrossRefGoogle Scholar
  6. 6.
    Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 54 (2008) CrossRefGoogle Scholar
  7. 7.
    Kim, R., Datta, S., Lundstrom, M.S.: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009) CrossRefGoogle Scholar
  8. 8.
    Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008) CrossRefGoogle Scholar
  9. 9.
    Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A. III, Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008) CrossRefGoogle Scholar
  10. 10.
    Reddy, P., Jang, S.-Y., Segalman, R.A., Majumdar, A.: Thermoelectricity in molecular junctions. Science 315, 1568 (2007) CrossRefGoogle Scholar
  11. 11.
    Baheti, K., Malen, J.A., Doak, P., Reddy, P., Jang, S.-Y., Tilley, T.D., Majumdar, A., Segalman, R.A.: Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8, 715 (2008) CrossRefGoogle Scholar
  12. 12.
    Malen, J.A., Doak, P., Baheti, K., Tilley, T.D., Segalman, R.A., Majumdar, A.: Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164 (2009) CrossRefGoogle Scholar
  13. 13.
    Malen, J.A., Yee, S.K., Majumdar, A., Segalman, R.A.: Fundamentals of energy transport, energy conversion, and thermal properties in organic-inorganic heterojunctions. Chem. Phys. Lett. 491, 109 (2010) CrossRefGoogle Scholar
  14. 14.
    Tan, A., Sadat, S., Reddy, P.: Measurement of thermopower and current-voltage characteristics of molecular junctions to quantify orbital alignment. Appl. Phys. Lett. 96, 013110 (2010) CrossRefGoogle Scholar
  15. 15.
    Hoffmann, E.A., Nilsson, H.A., Matthews, J.E., Nakpathomkun, N., Persson, A.I., Samuelson, L., Linke, H.: Measuring temperature gradients over nanometer length scales. Nano Lett. 9, 779 (2009) CrossRefGoogle Scholar
  16. 16.
    Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235 (2009) CrossRefGoogle Scholar
  17. 17.
    Dubi, Y., Di Ventra, M.: Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131 (2011) CrossRefGoogle Scholar
  18. 18.
    Bergfield, J.P., Stafford, C.A.: Thermoelectric signatures of coherent transport in single-molecule heterojunctions. Nano Lett. 9, 3072 (2009) CrossRefGoogle Scholar
  19. 19.
    Bergfield, J.P., Solis, M.A., Stafford, C.A.: Giant thermoelectric effect from transmission supernodes. ACS Nano 4, 5314 (2010) CrossRefGoogle Scholar
  20. 20.
    Kubala, B., König, J., Pekola, J.: Violation of the Wiedemann-Franz law in a single-electron transistor. Phys. Rev. Lett. 100, 066801 (2008) CrossRefGoogle Scholar
  21. 21.
    Held, K., Arita, R., Anisimov, V., Kuroki, K.: The LDA+DMFT route to identify good thermoelectrics. In: Zlatic, V., Hewson, A.C. (eds.) Properties and Applications of Thermoelectric Materials. The NATO Science for Peace and Security Programme, pp. 141–157. Springer, Berlin (2009) CrossRefGoogle Scholar
  22. 22.
    Held, K.: Electronic structure calculations using dynamical mean field theory. Adv. Phys. 56, 829 (2007) CrossRefGoogle Scholar
  23. 23.
    Wissgott, P., Toschi, A., Usui, H., Kuroki, K., Held, K.: Enhancement of the NaxCoO2 thermopower due to electronic correlations. Phys. Rev. B 82, 201106 (2010) CrossRefGoogle Scholar
  24. 24.
    Boese, D., Fazio, R.: Thermoelectric effects in Kondo-correlated quantum dots. Europhys. Lett. 56, 576 (2001) CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Dresselhaus, M.S., Shi, Y., Ren, Z., Chen, G.: High thermoelectric figure-of-merit in Kondo insulator nanowires at low temperatures. Nano Lett. 11, 1166 (2011) CrossRefGoogle Scholar
  26. 26.
    Pauly, F., Viljas, J.K., Cuevas, J.C.: Length-dependent conductance and thermopower in single-molecule junctions of dithiolated oligophenylene derivatives: A density functional study. Phys. Rev. B 78, 035315 (2008) CrossRefGoogle Scholar
  27. 27.
    Ke, S.-H., Yang, W., Curtarolo, S., Baranger, H.U.: Thermopower of molecular junctions: An ab initio study. Nano Lett. 9, 1011 (2009) CrossRefGoogle Scholar
  28. 28.
    Finch, C.M., García-Suárez, V.M., Lambert, C.J.: Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009) CrossRefGoogle Scholar
  29. 29.
    Liu, Y.-S., Chen, Y.-C.: Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations. Phys. Rev. B 79, 193101 (2009) CrossRefGoogle Scholar
  30. 30.
    Liu, Y.-S., Chen, Y.-R., Chen, Y.-C.: Thermoelectric efficiency in nanojunctions: A comparison between atomic junctions and molecular junctions. ACS Nano 3, 3497 (2009) CrossRefGoogle Scholar
  31. 31.
    Liu, Y.-S., Yao, H.-T., Chen, Y.-C.: Atomic-scale field-effect transistor as a thermoelectric power generator and self-powered device. J. Phys. Chem. C 115, 14988 (2011) CrossRefGoogle Scholar
  32. 32.
    Quek, S.Y., Choi, H.J., Louie, S.G., Neaton, J.B.: Thermopower of amine–gold-linked aromatic molecular junctions from first principles. ACS Nano 5, 551 (2011) CrossRefGoogle Scholar
  33. 33.
    Nozaki, D., Sevinçli, H., Li, W., Gutiérrez, R., Cuniberti, G.: Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes. Phys. Rev. B 81, 235406 (2010) CrossRefGoogle Scholar
  34. 34.
    Saha, K.K., Markussen, T., Thygesen, K.S., Nikolić, B.K.: Multiterminal single-molecule–graphene-nanoribbon junctions with the thermoelectric figure of merit optimized via evanescent mode transport and gate voltage. Phys. Rev. B 84, 041412(R) (2011) Google Scholar
  35. 35.
    Sergueev, N., Shin, S., Kaviany, M., Dunietz, B.: Efficiency of thermoelectric energy conversion in biphenyl-dithiol junctions: Effect of electron-phonon interactions. Phys. Rev. B 83, 195415 (2011) CrossRefGoogle Scholar
  36. 36.
    Bergfield, J.P., Solomon, G.C., Stafford, C.A., Ratner, M.A.: Novel quantum interference effects in transport through molecular radicals. Nano Lett. 11, 2759 (2011) CrossRefGoogle Scholar
  37. 37.
    Murphy, P., Mukerjee, S., Moore, J.: Optimal thermoelectric figure of merit of a molecular junction. Phys. Rev. B 78, 161406 (2008) CrossRefGoogle Scholar
  38. 38.
    Leijnse, M., Wegewijs, M.R., Flensberg, K.: Nonlinear thermoelectric properties of molecular junctions with vibrational coupling. Phys. Rev. B 82, 045412 (2010) CrossRefGoogle Scholar
  39. 39.
    Entin-Wohlman, O., Imry, Y., Aharony, A.: Three-terminal thermoelectric transport through a molecular junction. Phys. Rev. B 82, 115314 (2010) CrossRefGoogle Scholar
  40. 40.
    Stadler, R., Markussen, T.: Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications. J. Chem. Phys. 135, 154109 (2011) CrossRefGoogle Scholar
  41. 41.
    Markussen, T., Jauho, A.-P., Brandbyge, M.: Surface-decorated silicon nanowires: A route to high-ZT thermoelectrics. Phys. Rev. Lett. 103, 055502 (2009) CrossRefGoogle Scholar
  42. 42.
    Tsutsui, M., Taniguchi, M., Yokota, K., Kawai, T.: Roles of lattice cooling on local heating in metal-molecule-metal junctions. Appl. Phys. Lett. 96, 103110 (2010) CrossRefGoogle Scholar
  43. 43.
    Song, H., Reed, M.A., Lee, T.: Single molecule electronic devices. Adv. Mater. 23, 1583 (2011) CrossRefGoogle Scholar
  44. 44.
    Paulsson, M., Datta, S.: Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403 (2003) CrossRefGoogle Scholar
  45. 45.
    Cardamone, D., Stafford, C., Mazumdar, S.: Controlling quantum transport through a single molecule. Nano Lett. 6, 2422 (2006) CrossRefGoogle Scholar
  46. 46.
    Ke, S.-H., Yang, W., Baranger, H.U.: Quantum-interference-controlled molecular electronics. Nano Lett. 8, 3257 (2008) CrossRefGoogle Scholar
  47. 47.
    Saha, K.K., Nikolić, B.K., Meunier, V., Lu, W., Bernholc, J.: Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes. Phys. Rev. Lett. 105, 236803 (2010) CrossRefGoogle Scholar
  48. 48.
    Markussen, T., Stadler, R., Thygesen, K.S.: The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260 (2010) CrossRefGoogle Scholar
  49. 49.
    Markussen, T., Stadler, R., Thygesen, K.S.: Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules. Phys. Chem. Chem. Phys. 13, 14311 (2011) CrossRefGoogle Scholar
  50. 50.
    Galperin, M., Nitzan, A., Ratner, M.A.: Inelastic effects in molecular junction transport: scattering and self-consistent calculations for the Seebeck coefficient. Mol. Phys. 106, 397 (2008) CrossRefGoogle Scholar
  51. 51.
    Frederiksen, T., Paulsson, M., Brandbyge, M., Jauho, A.-P.: Inelastic transport theory from first principles: Methodology and application to nanoscale devices. Phys. Rev. B 75, 205413 (2007) CrossRefGoogle Scholar
  52. 52.
    Dash, L.K., Ness, H., Godby, R.W.: Nonequilibrium inelastic electronic transport: Polarization effects and vertex corrections to the self-consistent born approximation. Phys. Rev. B 84, 085433 (2011) CrossRefGoogle Scholar
  53. 53.
    Mingo, N.: Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74, 125402 (2006) CrossRefGoogle Scholar
  54. 54.
    Vo, T.T., Williamson, A.J., Lordi, V., Galli, G.: Atomistic design of thermoelectric properties of silicon nanowires. Nano Lett. 8, 1111 (2008) CrossRefGoogle Scholar
  55. 55.
    Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M.: On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys. 107, 023707 (2010) CrossRefGoogle Scholar
  56. 56.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002) MATHGoogle Scholar
  57. 57.
    Mitra, A., Aleiner, I., Millis, A.J.: Phonon effects in molecular transistors: Quantal and classical treatment. Phys. Rev. B 69, 245302 (2004) CrossRefGoogle Scholar
  58. 58.
    Dubi, Y., Di Ventra, M.: Thermoelectric effects in nanoscale junctions. Nano Lett. 9, 97 (2008) CrossRefGoogle Scholar
  59. 59.
    Timm, C.: Tunneling through molecules and quantum dots: Master-equation approaches. Phys. Rev. B 77, 195416 (2008) CrossRefGoogle Scholar
  60. 60.
    Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (2007) Google Scholar
  61. 61.
    Haupt, F., Novotný, T., Belzig, W.: Current noise in molecular junctions: Effects of the electron-phonon interaction. Phys. Rev. B 82, 165441 (2010) CrossRefGoogle Scholar
  62. 62.
    Härtle, R., Benesch, C., Thoss, M.: Vibrational nonequilibrium effects in the conductance of single molecules with multiple electronic states. Phys. Rev. Lett. 102, 146801 (2009) CrossRefGoogle Scholar
  63. 63.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995) Google Scholar
  64. 64.
    Reich, S., Maultzsch, J., Thomsen, C., Ordejón, P.: Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002) CrossRefGoogle Scholar
  65. 65.
    Cresti, A., Nemec, N., Biel, B., Niebler, G., Triozon, F., Cuniberti, G., Roche, S.: Charge transport in disordered graphene-based low dimensional materials. Nano Res. 1, 361 (2008) CrossRefGoogle Scholar
  66. 66.
    Markussen, T., Jauho, A.-P., Brandbyge, M.: Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties. Phys. Rev. B 79, 035415 (2009) CrossRefGoogle Scholar
  67. 67.
    Cervantes-Sodi, F., Csányi, G., Piscanec, S., Ferrari, A.C.: Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B 77, 165427 (2008) CrossRefGoogle Scholar
  68. 68.
    Areshkin, D.A., Nikolić, B.K.: Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing a large number of atoms. Phys. Rev. B 81, 155450 (2010) CrossRefGoogle Scholar
  69. 69.
    Toher, C., Filippetti, A., Sanvito, S., Burke, K.: Self-interaction errors in density-functional calculations of electronic transport. Phys. Rev. Lett. 95, 146402 (2005) CrossRefGoogle Scholar
  70. 70.
    Cuniberti, G., Fagas, G., Richter, K. (eds.): Introducing Molecular Electronics. Springer, Berlin (2005) Google Scholar
  71. 71.
    Fiolhais, C., Nogueira, F., Marques, M.A. (eds.): A Primer in Density Functional Theory. Lecture Notes in Physics, vol. 620. Springer, Berlin (2003) MATHGoogle Scholar
  72. 72.
    Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001) CrossRefGoogle Scholar
  73. 73.
    Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002) CrossRefGoogle Scholar
  74. 74.
    Stokbro, K.: First-principles modeling of electron transport. J. Phys., Condens. Matter 20, 064216 (2008) CrossRefGoogle Scholar
  75. 75.
    Rungger, I., Sanvito, S.: Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78, 035407 (2008) CrossRefGoogle Scholar
  76. 76.
    Saha, K.K., Lu, W., Bernholc, J., Meunier, V.: First-principles methodology for quantum transport in multiterminal junctions. J. Chem. Phys. 131, 164105 (2009) CrossRefGoogle Scholar
  77. 77.
    Esfarjani, K., Zebarjadi, M., Kawazoe, Y.: Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys. Rev. B 73, 085406 (2006) CrossRefGoogle Scholar
  78. 78.
    Strange, M., Rostgaard, C., Häkkinen, H., Thygesen, K.S.: Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions. Phys. Rev. B 83, 115108 (2011) CrossRefGoogle Scholar
  79. 79.
    Wang, J.-S., Wang, J., Lü, J.T.: Quantum thermal transport in nanostructures. Eur. Phys. J. B 62, 381 (2008) CrossRefGoogle Scholar
  80. 80.
    McGaughey, A.J.H., Kaviany, M.: Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction. In: Advances in Heat Transfer, vol. 39, p. 169. Academic Press, San Diego (2006) Google Scholar
  81. 81.
    McGaughey, A.J.H., Kaviany, M.: Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation. Phys. Rev. B 69, 094303 (2004) CrossRefGoogle Scholar
  82. 82.
    Wang, R.Y., Segalman, R.A., Majumdar, A.: Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89, 173113 (2006) CrossRefGoogle Scholar
  83. 83.
    Rego, L.G.C., Kirczenow, G.: Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232 (1998) CrossRefGoogle Scholar
  84. 84.
  85. 85.
    Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dulak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V., Romero, N.A., Stausholm-Moller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Hammer, B., Hakkinen, H., Madsen, G.K.H., Nieminen, R.M., Norskov, J.K., Puska, M., Rantala, T.T., Schiotz, J., Thygesen, K.S., Jacobsen, K.W.: Electronic structure calculations with gpaw: A real-space implementation of the projector augmented-wave method. J. Phys., Condens. Matter 22, 253202 (2010) CrossRefGoogle Scholar
  86. 86.
    Tan, Z.W., Wang, J.-S., Gan, C.K.: First-principles study of heat transport properties of graphene nanoribbons. Nano Lett. 11, 214 (2010) CrossRefGoogle Scholar
  87. 87.
  88. 88.
    Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011) CrossRefGoogle Scholar
  89. 89.
    Aksamija, Z., Knezevic, I.: Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011) CrossRefGoogle Scholar
  90. 90.
    Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Mullen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470 (2010) CrossRefGoogle Scholar
  91. 91.
    Jia, X., Hofmann, M., Meunier, V., Sumpter, B.G., Campos-Delgado, J., Manuel, J., Hyungbin, R.-H., Ya-Ping, S., Reina, H.A., Kong, J., Terrones, M., Dresselhaus, M.S.: Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701 (2009) CrossRefGoogle Scholar
  92. 92.
    Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Zettl, J.M.T.A., Louie, S.G., Dai, H., Crommie, M.F.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616 (2011) CrossRefGoogle Scholar
  93. 93.
    Ke, S.-H., Baranger, H.U., Yang, W.: Contact transparency of nanotube-molecule-nanotube junctions. Phys. Rev. Lett. 99, 146802 (2007) CrossRefGoogle Scholar
  94. 94.
    Yazyev, O.V., Katsnelson, M.I.: Magnetic correlations at graphene edges: Basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008) CrossRefGoogle Scholar
  95. 95.
    Kunstmann, J., Özdoğan, C., Quandt, A., Fehske, H.: Stability of edge states and edge magnetism in graphene nanoribbons. Phys. Rev. B 83, 045414 (2011) CrossRefGoogle Scholar
  96. 96.
    Prins, F., Barreiro, A., Ruitenberg, J.W., Seldenthuis, J.S., Aliaga-Alcalde, N., Vandersypen, L.M.K., van der Zant, H.S.J.: Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607 (2011) CrossRefGoogle Scholar
  97. 97.
    Guo, X., Small, J.P., Klare, J.E., Wang, Y., Purewal, M.S., Tam, I.W., Hong, B.H., Caldwell, R., Huang, L., O’Brien, S., Yan, J., Breslow, R., Wind, S.J., Hone, J., Kim, P., Nuckolls, C.: Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356 (2006) CrossRefGoogle Scholar
  98. 98.
    Zuev, Y.M., Chang, W., Kim, P.: Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009) CrossRefGoogle Scholar
  99. 99.
    Velev, J., Butler, W.: On the equivalence of different techniques for evaluating the green function for a semi-infinite system using a localized basis. J. Phys., Condens. Matter 16, R637 (2004) CrossRefGoogle Scholar
  100. 100.
    Lopez-Sancho, M.P., Lopez-Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F 14, 1205 (1984) CrossRefGoogle Scholar
  101. 101.
  102. 102.
    Zimmermann, J., Pavone, P., Cuniberti, G.: Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: Minimal force-constant model. Phys. Rev. B 78, 045410 (2008) CrossRefGoogle Scholar
  103. 103.
    Sevinçli, H., Cuniberti, G.: Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010) CrossRefGoogle Scholar
  104. 104.
    Mingo, N., Stewart, D.A. Broido, D.A., Srivastava, D.: Phonon transmission through defects in carbon nanotubes from first principles. Phys. Rev. B 77, 033418 (2008) CrossRefGoogle Scholar
  105. 105.
    Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990) CrossRefGoogle Scholar
  106. 106.
    Lindsay, L., Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010) CrossRefGoogle Scholar
  107. 107.
    Gale, J.D.: Gulp—a computer program for the symmetry adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629 (1997) CrossRefGoogle Scholar
  108. 108.
    Galperin, M., Ratner, M.A., Nitzan, A.: Molecular transport junctions: vibrational effects. J. Phys., Condens. Matter 19, 103201 (2007) CrossRefGoogle Scholar
  109. 109.
    Horsfield, A.P., Bowler, D.R., Ness, H., Sánchez, C.G., Todorov, T.N., Fisher, A.J.: The transfer of energy between electrons and ions in solids. Rep. Prog. Phys. 69, 1195 (2006) CrossRefGoogle Scholar
  110. 110.
    Lü, J.T., Wang, J.-S.: Coupled electron and phonon transport in one-dimensional atomic junctions. Phys. Rev. B 76, 165418 (2007) CrossRefGoogle Scholar
  111. 111.
    Hsu, B.C., Liu, Y.-S., Lin, S.H., Chen, Y.-C.: Seebeck coefficients in nanoscale junctions: Effects of electron-vibration scattering and local heating. Phys. Rev. B 83, 041404 (2011) CrossRefGoogle Scholar
  112. 112.
    Asai, Y.: Nonequilibrium phonon effects on transport properties through atomic and molecular bridge junctions. Phys. Rev. B 78, 045434 (2008) MathSciNetCrossRefGoogle Scholar
  113. 113.
    Jiang, J.-W., Wang, J.-S.: Joule heating and thermoelectric properties in short single-walled carbon nanotubes: electron-phonon interaction effect. J. Appl. Phys. 110, 124319 (2011) CrossRefGoogle Scholar
  114. 114.
    Choi, W.S., Ohta, H., Moon, S.J., Lee, Y.S., Noh, T.W.: Dimensional crossover of polaron dynamics in Nb:SrTiO3/SrTiO3 superlattices: Possible mechanism of thermopower enhancement. Phys. Rev. B 82, 024301 (2010) CrossRefGoogle Scholar
  115. 115.
    Scarola, V.W., Mahan, G.D.: Phonon drag effect in single-walled carbon nanotubes. Phys. Rev. B 66, 205405 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2012

Authors and Affiliations

  • Branislav K. Nikolić
    • 1
  • Kamal K. Saha
    • 1
  • Troels Markussen
    • 2
  • Kristian S. Thygesen
    • 2
  1. 1.Department of Physics and AstronomyUniversity of DelawareNewarkUSA
  2. 2.Center for Atomic-scale Materials Design (CAMD), Department of PhysicsTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations