Journal of Computational Electronics

, Volume 11, Issue 1, pp 29–44 | Cite as

Numerical study of the thermoelectric power factor in ultra-thin Si nanowires

Article

Abstract

Low dimensional structures have demonstrated improved thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, κ l . This has been observed for a variety of materials, even for traditionally poor thermoelectrics such as silicon. Other than the reduction in κ l , further improvements in the TE figure of merit ZT could potentially originate from the thermoelectric power factor. In this work, we couple the ballistic (Landauer) and diffusive linearized Boltzmann electron transport theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB) electronic structure model. We calculate the room temperature electrical conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires (NWs). We describe the numerical formulation of coupling TB to those transport formalisms, the approximations involved, and explain the differences in the conclusions obtained from each model. We investigate the effects of cross section size, transport orientation and confinement orientation, and the influence of the different scattering mechanisms. We show that such methodology can provide robust results for structures including thousands of atoms in the simulation domain and extending to length scales beyond 10 nm, and point towards insightful design directions using the length scale and geometry as a design degree of freedom. We find that the effect of low dimensionality on the thermoelectric power factor of Si NWs can be observed at diameters below ∼7 nm, and that quantum confinement and different transport orientations offer the possibility for power factor optimization.

Keywords

Thermoelectrics Tight-binding Atomistic sp3d5s* Boltzmann transport Seebeck coefficient Thermoelectric power factor Silicon Nanowire ZT 

Notes

Acknowledgements

This work was supported by the Austrian Climate and Energy Fund, contract No. 825467.

References

  1. 1.
    Snyder, G.J., Toberer, E.S.: Nat. Mater. 7, 105–114 (2008) CrossRefGoogle Scholar
  2. 2.
    Majumdar, A.: Sci. Mater. 303, 777–778 (2004) Google Scholar
  3. 3.
    Hicks, L.D., Dresselhaus, M.S.: Phys. Rev. B 47(24), 16631 (1993) CrossRefGoogle Scholar
  4. 4.
    Venkatasubramanian, R., Siivola, E., Colpitts, T., O’ Quinn, B.: Nature 413, 597–602 (2001) CrossRefGoogle Scholar
  5. 5.
    Broido, D.A., Reinecke, T.L.: Phys. Rev. B 51, 13797 (1994) CrossRefGoogle Scholar
  6. 6.
    Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E.: Science 297, 2229–2232 (2002) CrossRefGoogle Scholar
  7. 7.
    Dresselhaus, M., Chen, G., Tang, M.Y., Yang, R., Lee, H., Wang, D., Ren, Z., Fleurial, J.-P., Gagna, P.: Adv. Mater. 19, 1043–1053 (2007) CrossRefGoogle Scholar
  8. 8.
    Shakouri, A.: In: IEEE International Conference on Thermoelectrics, pp. 495–500 (2005) Google Scholar
  9. 9.
    Sofo, J.O., Mahan, G.D.: Appl. Phys. Lett. 65, 2690 (1994) (3pp) CrossRefGoogle Scholar
  10. 10.
    Kim, W., Singer, S.L., Majumdar, A., Vashaee, D., Bian, Z., Shakouri, A., Zeng, G., Bowers, J.E., Zide, J.M.O., Gossard, A.C.: Appl. Phys. Lett. 88, 242107 (2006) CrossRefGoogle Scholar
  11. 11.
    Wu, Y., Fan, R., Yang, P.: Nano Lett. 2(2), 83 (2002) CrossRefGoogle Scholar
  12. 12.
    Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A. III, Heath, J.R.: Nature 451, 168–171 (2008) CrossRefGoogle Scholar
  13. 13.
    Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Nature 451, 163–168 (2008) CrossRefGoogle Scholar
  14. 14.
    Tang, J., Wang, H.-T., Lee, D.H., Fardy, M., Huo, Z., Russell, T.P., Yang, P.: Nano Lett. 10(10), 4279–4283 (2010) CrossRefGoogle Scholar
  15. 15.
    Li, D., Wu, Y., Fang, R., Yang, P., Majumdar, A.: Appl. Phys. Lett. 83, 3186–3188 (2003) CrossRefGoogle Scholar
  16. 16.
    Nielsch, K., Bachmann, J., Kimling, J., Böttner, H.: Adv. Energy Mater. 1, 713 (2011) CrossRefGoogle Scholar
  17. 17.
    Chen, G.: Semicond. Semimet. 71, 203–259 (2001) CrossRefGoogle Scholar
  18. 18.
    Chen, R., Hochbaum, A.I., Murphy, P., Moore, J., Yang, P., Majumdar, A.: Phys. Rev. Lett. 101, 105501 (2008) CrossRefGoogle Scholar
  19. 19.
    Li, D., Huxtable, S.T., Abramsin, A.R., Majumdar, A.: Trans. ASME 127, 108–114 (2005) CrossRefGoogle Scholar
  20. 20.
    Martin, P., Aksamija, Z., Pop, E., Ravaioli, U.: Phys. Rev. Lett. 102, 125503 (2009) CrossRefGoogle Scholar
  21. 21.
    Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.C.: Adv. Mater. 22, 3970–3980 (2010) CrossRefGoogle Scholar
  22. 22.
    Jaworski, C.M., Kulbachinskii, V., Heremans, J.P.: Phys. Rev. B 80, 125208 (2009) CrossRefGoogle Scholar
  23. 23.
    Neophytou, N., Kosina, H.: Phys. Rev. B 83, 245305 (2011) CrossRefGoogle Scholar
  24. 24.
    Mahan, G.D., Sofo, J.O.: Proc. Natl. Acad. Sci. USA 93, 7436–7439 (1996) CrossRefGoogle Scholar
  25. 25.
    Boykin, T.B., Klimeck, G., Oyafuso, F.: Phys. Rev. B 69(11), 115201 (2004) CrossRefGoogle Scholar
  26. 26.
    Klimeck, G., Ahmed, S., Hansang, B., Kharche, N., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M., Boykin, T.B., Rahman, R.: IEEE Trans. Electron Devices 54(9), 2079–2089 (2007) CrossRefGoogle Scholar
  27. 27.
    Klimeck, G., Ahmed, S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B.: IEEE Trans. Electron Devices 54(9), 2090–2099 (2007) CrossRefGoogle Scholar
  28. 28.
    Neophytou, N., Paul, A., Lundstrom, M., Klimeck, G.: IEEE Trans. Electron Devices 55(6), 1286–1297 (2008) CrossRefGoogle Scholar
  29. 29.
    Neophytou, N., Paul, A., Klimeck, G.: IEEE Trans. Nanotechnol. 7(6), 710–719 (2008) CrossRefGoogle Scholar
  30. 30.
    Landauer, R.: IBM J. Res. Dev. 1, 223 (1957) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kim, R., Datta, S., Lundstrom, M.S.: J. Appl. Phys. 105, 034506 (2009) CrossRefGoogle Scholar
  32. 32.
    Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M.: J. Appl. Phys. 107, 023707 (2010) CrossRefGoogle Scholar
  33. 33.
    Liang, G., Huang, W., Koong, C.S., Wang, J.-S., Lan, J.: J. Appl. Phys. 107, 014317 (2010) CrossRefGoogle Scholar
  34. 34.
    Neophytou, N., Wagner, M., Kosina, H., Selberherr, S.: J. Electron. Mater. 39(9), 1902–1908 (2010) CrossRefGoogle Scholar
  35. 35.
    Scheidemantel, T.J., Ambrosch-Draxl, C., Thonhauser, T., Badding, J.V., Sofo, J.O.: Phys. Rev. B 68, 125210 (2003) CrossRefGoogle Scholar
  36. 36.
    Lee, S., Oyafuso, F., Von Allmen, P., Klimeck, G.: Phys. Rev. B 69, 045316 (2004) CrossRefGoogle Scholar
  37. 37.
    Vo, T.T.M., Williamson, A.J., Lordi, V., Galli, G.: Nano Lett. 8(4), 1111–1114 (2008) CrossRefGoogle Scholar
  38. 38.
    Markussen, T., Jauho, A.-P., Brandbyge, M.: Phys. Rev. Lett. 103, 055502 (2009) CrossRefGoogle Scholar
  39. 39.
    Neophytou, N., Kosina, H.: Phys. Rev. B 84, 085313 (2011) CrossRefGoogle Scholar
  40. 40.
    Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2000) CrossRefGoogle Scholar
  41. 41.
    Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997) CrossRefGoogle Scholar
  42. 42.
    Fischetti, M.V.: J. Appl. Phys. 89, 1232 (2001) CrossRefGoogle Scholar
  43. 43.
    Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: J. Appl. Phys. 94, 1079 (2003) CrossRefGoogle Scholar
  44. 44.
    Esseni, D., Abramo, A.: IEEE Trans. Electron Devices 50(7), 1665 (2003) CrossRefGoogle Scholar
  45. 45.
    Buin, A.K., Verma, A., Svizhenko, A., Anantram, M.P.: Nano Lett. 8(2), 760–765 (2008) CrossRefGoogle Scholar
  46. 46.
    Buin, A.K., Verma, A., Anantram, M.P.: J. Appl. Phys. 104, 053716 (2008) CrossRefGoogle Scholar
  47. 47.
    Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: J. Appl. Phys. 104, 063711 (2008) CrossRefGoogle Scholar
  48. 48.
    Jin, S., Fischetti, M.V., Tang, T.: J. Appl. Phys. 102, 83715 (2007) CrossRefGoogle Scholar
  49. 49.
    Jacoboni, C., Reggiani, L.: Rev. Mod. Phys. 55, 645 (1983) CrossRefGoogle Scholar
  50. 50.
    Goodnick, S.M., Ferry, D.K., Wilmsen, C.W., Liliental, Z., Fathy, D., Krivanek, O.L.: Phys. Rev. B 32, 8171 (1985) CrossRefGoogle Scholar
  51. 51.
    Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M., Matsusue, T.: Appl. Phys. Lett. 51(23), 1934 (1987) CrossRefGoogle Scholar
  52. 52.
    Uchida, K., Takagi, S.: Appl. Phys. Lett. 82(17), 2916–2918 (2003) CrossRefGoogle Scholar
  53. 53.
    Fang, T., Konar, A., Xing, H., Jena, D.: Phys. Rev. B 78, 205403 (2008) CrossRefGoogle Scholar
  54. 54.
    Wang, J., Polizzi, E., Ghosh, A., Datta, S., Lundstrom, M.: Appl. Phys. Lett. 87, 043101 (2005) CrossRefGoogle Scholar
  55. 55.
    Prange, R.E., Nee, T.-W.: Phys. Rev. 168, 779 (1968) CrossRefGoogle Scholar
  56. 56.
    Ando, T., Fowler, A., Stern, F.: Rev. Mod. Phys. 54, 437 (1982) CrossRefGoogle Scholar
  57. 57.
    Esseni, D.: IEEE Trans. Electron Devices 51(3), 394 (2004) CrossRefGoogle Scholar
  58. 58.
    Lee, J., Spector, H.N.: J. Appl. Phys. 57(2), 366 (1985) CrossRefGoogle Scholar
  59. 59.
    Sarma, S.D., Lai, W.: Phys. Rev. B 32(2), 1401 (1985) CrossRefGoogle Scholar
  60. 60.
    Yuh, P., Wang, K.L.: Appl. Phys. Lett. 49(25), 1738 (1986) CrossRefGoogle Scholar
  61. 61.
    Neophytou, N., Kosina, H.: Nano Lett. 10(12), 4913–4919 (2010) CrossRefGoogle Scholar
  62. 62.
    Donetti, L., Gamiz, F., Roldan, J.B., Godoy, A.: J. Appl. Phys. 100, 013701 (2006) CrossRefGoogle Scholar
  63. 63.
    Fischetti, M.V., Laux, S.E.: J. Appl. Phys. 80, 2234 (1996) CrossRefGoogle Scholar
  64. 64.
    Yamada, T., Ferry, D.K.: Solid-State Electron. 38, 881 (1995) CrossRefGoogle Scholar
  65. 65.
    Ryu, H.J., Aksamija, Z., Paskiewicz, D.M., Scott, S.A., Lagally, M.G., Knezevic, I., Eriksson, M.A.: Phys. Rev. Lett. 105, 256601 (2010) CrossRefGoogle Scholar
  66. 66.
    Kosina, H., Kaiblinger-Grujin, G.: Solid-State Electron. 42(3), 331–338 (1998) CrossRefGoogle Scholar
  67. 67.
    Markussen, T., Jauho, A.-P., Brandbyge, M.: Nano Lett. 8(11), 3771–3775 (2008) CrossRefGoogle Scholar
  68. 68.
    Aksamija, Z., Knezevic, I.: Phys. Rev. B 82, 045319 (2010) CrossRefGoogle Scholar
  69. 69.
    Markussen, T., Jauho, A.-P., Brandbyge, M.: Phys. Rev. B 79, 035415 (2009) CrossRefGoogle Scholar
  70. 70.
    Goswami, S., Siegert, C., Shamim, S., Pepper, M., Farrer, I., Ritchie, D.A., Ghosh, A.: Appl. Phys. Lett. 97, 132104 (2010) CrossRefGoogle Scholar
  71. 71.
    Zhang, P., Tewaarwerk, E., Park, B.-N., Savage, D.E., Celler, G.K., Knezevic, I., Evans, P.G., Eriksson, M.A., Lagally, M.G.: Nat. Lett. 439, 703 (2006) CrossRefGoogle Scholar
  72. 72.
    He, T., He, J., Lu, M., Chen, B., Pan, H., Reus, W.F., Nolte, W.M., Nackashi, D.P., Franzon, P.D., Tour, J.M.: J. Am. Chem. Soc. 128, 14537 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2012

Authors and Affiliations

  1. 1.Institute for MicroelectronicsTU WienWienAustria

Personalised recommendations