Advertisement

Journal of Computational Electronics

, Volume 11, Issue 1, pp 45–55 | Cite as

Hydrodynamic modeling of silicon quantum wires

  • O. Muscato
  • V. Di Stefano
Article

Abstract

A hydrodynamic model for silicon quantum wires is formulated by taking the moments of the multisubband Boltzmann equation, coupled to the Schrödinger-Poisson system. Explicit closure relations for the fluxes and production terms (i.e. the moments on the collisional operator) are obtained by means of the Maximum Entropy Principle of Extended Thermodynamics, including scattering of electrons with acoustic and non-polar optical phonons. By using this model, thermoelectric effects are investigated.

Keywords

Silicon quantum wires Boltzmann equation Hydrodynamic models Maximum Entropy Principle Thermal effects 

Notes

Acknowledgements

This work has been supported by “Progetti di Ricerca di Ateneo” Università degli Studi di Catania, by MIUR PRIN 2009 “Problemi Matematici delle Teorie Cinetiche e Applicazioni”, and the CINECA Award N. HP10C3U0CA 2011 for the availability of high performance computing resources and support.

References

  1. 1.
    Cui, Y., Lieber, C.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001) CrossRefGoogle Scholar
  2. 2.
    Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A. III, Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008) CrossRefGoogle Scholar
  3. 3.
    Hochbaum, A., Chen, R., Delgado, R., Liang, W., Garnett, E., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008) CrossRefGoogle Scholar
  4. 4.
    Servati, P., Colli, A., Hofmann, S., Fu, Y.Q., Beecher, P., Durrani, Z.A.K., Ferrari, A.C., Flewitt, A.J., Robertson, J., Milne, W.I.: Scalable silicon nanowire photodetectors. Physica E 38, 64–66 (2007) CrossRefGoogle Scholar
  5. 5.
    Yu, J.-Y., Chung, S.-W., Heath, J.R.: Silicon nanowires: preparation, device fabrication, and transport properties. J. Phys. Chem. B 104(50), 11864–11870 (2000) CrossRefGoogle Scholar
  6. 6.
    Singh, N., Buddharaju, K.D., Manhas, S.K., Agarwal, A., Rustagi, S.C., Lo, G.Q., Balasubramanian, N., Kwong, D.-L.: Si, SiGe nanowire devices by top–down technology and their applications. IEEE Electron Device Lett. 27, 3107–3118 (2006) Google Scholar
  7. 7.
    Sun, Y., Rusli, Yu, M., Salfi, J., Souza, C., Ruda, H.E., Singh, N., Lin, F.K., Lo, P., Kwong, D.-L.: Electrical characteristics and photocurrent spectral response of Si nanowires p-i-n junctions. In: Photonics Global Conference (PGC) (2010) Google Scholar
  8. 8.
    Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004) CrossRefGoogle Scholar
  9. 9.
    Gilbert, M.J., Ferry, D.K.: Efficient quantum three-dimensional modeling of fully depleted ballistic silicon-on-insulator metal-oxide semiconductor field-effect-transistors. J. Appl. Phys. 95(12), 7954–7960 (2004) CrossRefGoogle Scholar
  10. 10.
    Martinez, A., Brown, A.R., Asenov, A.: Full-band NEGF simulations of surface roughness in Si nanowires. J. Phys. Conf. Ser. 242, 012016 (2010) CrossRefGoogle Scholar
  11. 11.
    Frey, M., Esposito, A., Schenk, A.: Computational comparison of conductivity and mobility models for silicon nanowire devices. J. Appl. Phys. 109(8), 083707 (2011) CrossRefGoogle Scholar
  12. 12.
    Cresti, A., Pala, M.G., Poli, S., Mouis, M., Ghibaudo, G.: A comparative study of surface-roughness-induced variability in silicon nanowire and double-gate FETs. IEEE Trans. Electron Devices 58(8), 2274–2281 (2011) CrossRefGoogle Scholar
  13. 13.
    Wang, J., Lundstrom, M.: Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? In: IEDM Tech. Dig., San Francisco, CA, pp. 707–710 (2002) Google Scholar
  14. 14.
    Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2000) CrossRefGoogle Scholar
  15. 15.
    Jin, S., Tang, T.-W., Fischetti, M.V.: Simulation of silicon nanowire transistors using Boltzmann Transport equation under the Relaxation time approximation. IEEE Trans. Electron Devices 55(3), 727–736 (2008) CrossRefGoogle Scholar
  16. 16.
    Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron mobility in silicon nanowires. IEEE Trans. Nanotechnol. 6(1), 113–117 (2007) CrossRefGoogle Scholar
  17. 17.
    Lenzi, M., Palestri, P., Gnani, E., Reggiani, S., Gnudi, A., Esseni, D., Selmi, L., Baccarani, G.: Investigation of the transport properties of silicon nanowires using deterministic and Monte Carlo approaches to the solution of the Boltzmann transport equation. IEEE Trans. Electron Devices 55(8), 2086–2096 (2008) CrossRefGoogle Scholar
  18. 18.
    Ramayya, E.B., Knezevic, I.: Self-consistent Poisson-Schrödinger-Monte Carlo solver: electron mobility in silicon nanowires. J. Comput. Electron. 9, 206–210 (2010) CrossRefGoogle Scholar
  19. 19.
    Ossig, G., Schuerrer, F.: Simulation of non-equilibrium electron transport in silicon quantum wires. J. Comput. Electron. 7, 367–370 (2008) CrossRefGoogle Scholar
  20. 20.
    Grasser, T., Tang, T.-W., Kosina, H., Selberherr, S.: A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91(2), 251–273 (2003) CrossRefGoogle Scholar
  21. 21.
    Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2001) zbMATHCrossRefGoogle Scholar
  22. 22.
    Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-equilibrium Thermodynamics. Springer, Berlin (2008) zbMATHCrossRefGoogle Scholar
  23. 23.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, Berlin (1998) zbMATHCrossRefGoogle Scholar
  24. 24.
    Muscato, O., Romano, V.: Simulation of submicron silicon diodes with a non-parabolic hydrodynamical model based on the maximum entropy principle. VLSI Des. 13, 273–279 (2001) CrossRefGoogle Scholar
  25. 25.
    Mascali, G., Romano, V.: Simulation of Gunn oscillations with a non-parabolic hydrodynamical model based on the Maximum Entropy Principle. Compel 24(1), 35–54 (2005) zbMATHGoogle Scholar
  26. 26.
    Mascali, G., Romano, V., Sellier, J.M.: MEP parabolic hydrodynamical model for holes in silicon semiconductors. Nuovo Cimento B 120(2), 197–215 (2005) Google Scholar
  27. 27.
    La Rosa, S., Mascali, G., Romano, V.: Exact Maximum Entropy closure of the hydrodynamical model for Si semiconductors: the 8-moment case. SIAM J. Appl. Math. 70, 710 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Mascali, G., Romano, V.: A hydrodynamic model for hole transport in silicon semiconductors: the case of warped non-parabolic bands. Math. Comput. Model. 53, 213–229 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Muscato, O., Di Stefano, V.: Modeling heat generation in a submicrometric n+–n–n+ silicon diode. J. Appl. Phys. 104, 124501 (2008) CrossRefGoogle Scholar
  30. 30.
    Di Stefano, V.: Modeling thermal effects in submicron semiconductor devices. Commun. Appl. Ind. Math. 1, 110–127 (2010) Google Scholar
  31. 31.
    Muscato, O., Di Stefano, V.: Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors. J. Phys. A, Math. Theor. 44, 105501 (2011) CrossRefGoogle Scholar
  32. 32.
    Muscato, O., Di Stefano, V.: An Energy Transport Model describing heat generation and conduction in silicon semiconductors. J. Stat. Phys. 144, 171–197 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Muscato, O., Di Stefano, V.: Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors. J. Appl. Phys. in press Google Scholar
  34. 34.
    Polizzi, E.: Density-matrix-based algorithms for solving eigenvalue problems. Phys. Rev. B 79, 115112 (2009) CrossRefGoogle Scholar
  35. 35.
    Ferry, D.K., Goodnick, S.M., Bird, J.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009) Google Scholar
  36. 36.
    Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008) CrossRefGoogle Scholar
  37. 37.
    Jin, S., Fischetti, M.V., Tang, T.-W.: Modeling of electron mobility in gated silicon nanowires at room temperature: Surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007) CrossRefGoogle Scholar
  38. 38.
    Knezevic, I., Ramayya, E.B., Vasileska, D., Goodnick, S.M.: Diffusive transport in quasi-2D and quasi-1D electron systems. J. Comput. Theor. Nanosci. 6, 1725–1753 (2009) CrossRefGoogle Scholar
  39. 39.
    Anile, A.M., Romano, V.: Nonparabolic band transport in semiconductors: closure of the moment equations. Contin. Mech. Thermodyn. 11, 307–325 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Muscato, O.: The Onsager reciprocity principle as a check of consistency for semiconductor carrier transport models. Physica A 289, 422–458 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders, Philadelphia (1988) Google Scholar
  42. 42.
    Nag, B.R.: Physics of Quantum Well Devices. Kluwer, Dordrecht (2000) Google Scholar
  43. 43.
    Aksamija, Z., Knezevic, I.: Thermoelectric properties of silicon nanostructures. J. Comput. Electron. 9, 173–179 (2010) CrossRefGoogle Scholar
  44. 44.
    Herring, C.: Theory of thermopower for semiconductors. Phys. Rev. 96(5), 1163–1187 (1954) CrossRefGoogle Scholar
  45. 45.
    Shi, L., Yao, D., Zhang, G., Li, B.: Size dependent thermoelectric properties of silicon nanowires. Appl. Phys. Lett. 95, 063102 (2009) CrossRefGoogle Scholar
  46. 46.
    Ramayya, E.B., Knezevic, I.: Ultrascaled silicon nanowires as efficient thermoelectric materials. In: Proceedings IWCE (2009) Google Scholar

Copyright information

© Springer Science+Business Media LLC 2012

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi di CataniaCataniaItaly

Personalised recommendations