Advertisement

Numerical analysis of electron optical system with microchannel plate

  • Alla Shymanska
Article

Abstract

This paper describes a numerical development of image converters and intensifiers which incorporate an inverting electron optical system (EOS) and a microchannel plate (MCP) as an amplifier. The numerical design of the system includes calculation of the electrostatic field in the device, trajectories of electrons emitted from a photocathode, and determination of the modulation-transfer-function (MTF) which gives the objective estimation for the image quality.

Results of the numerical experiments are shown, and the EOS with optimized characteristics is developed. It provides the nearly flat image surface, determines the position of the surface of the best focus, minimizes the image distortion and reduces a noise factor of the MCP.

Keywords

Electron optical system Microchannel plate Electrostatic field Electron trajectories Modulation-transfer-function Numerical analysis 

References

  1. 1.
    Catchpole, C.E.: Measurement of the spatial frequency response of image devices. Adv. Electron. Electron Phys. 22(58), 425–433 (1966) CrossRefGoogle Scholar
  2. 2.
    Clarke, J.A.: Measuring the MTF of channel image intensifiers. Acta Electron. 16(1), 33–41 (1973) Google Scholar
  3. 3.
    Emberson, D.L., Holmshaw, R.T.: The design and performance of an inverting channel image intensifier. Acta Electron. 16(1), 23–32 (1973) Google Scholar
  4. 4.
    Evdokimov, V.N., Kudrya, A.A., Tyutikov, A.M., Flegontov, Yu.A., Shymanska, A.V.: Current density distribution in the image of the multidyne’s channel. Radiotekh. Electron. 29, 390–392 (1984) Google Scholar
  5. 5.
    Hoenderken, T.H., Hagen, C.W., Barth, J.E., Kruit, P., Nutzel, G.O.: Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier. J. Vac. Sci. Technol. B 19(3), 843–850 (2001) CrossRefGoogle Scholar
  6. 6.
    Ilyin, V.P.: Numerical Methods for Solving Problems in Electron Optics. Nauka, Novosibirsk (1974) Google Scholar
  7. 7.
    Ivanov, V.: The image quality evaluation. Micro-channel amplifiers. The University of Chicago, Argonne and Fermilab, Large-area picosecond photo-detectors project, USA (2009). http://psec.uchicago.edu/Papers/Ivanov_image_quality.doc
  8. 8.
    Ivanov, V., Brezhnev, V.: New formulation of the synthesis problem in electron optics. Nucl. Instrum. Methods A 519, 117–132 (2004) CrossRefGoogle Scholar
  9. 9.
    Ivanov, V., Kriklivyy, V.: Numerical algorithms for boundary problems with disturbed axial symmetry. Nucl. Instrum. Methods A 519, 96–116 (2004) CrossRefGoogle Scholar
  10. 10.
    Khursheed, A.: The Finite Element Method in Charged Particle Optics. Kluwer Academic, Dordrecht (1999). Field solution for charged particle optics, pp. 25–44 Google Scholar
  11. 11.
    Miroshnikov, M.M.: Theoretical Foundations of Electron—Optical Devices. Mechanical Engineering, Leningrad (1983) Google Scholar
  12. 12.
    Munro, E.: Computational techniques for design of charged particle optical systems. In: Orloff, J. (ed.), Handbook of charged Particle Optics, pp. 1–74. CRC Press LLC, Boca Raton (1997) Google Scholar
  13. 13.
    Schagen, P.: Electronic aids to night vision. Philos. Trans. R. Soc. A 269(1196), 233–263 (1971) CrossRefGoogle Scholar
  14. 14.
    Schagen, P.: Image converters and intensifiers. J. Phys. E, Sci. Instr. 8, 153–160 (1975) CrossRefGoogle Scholar
  15. 15.
    Shymanska, A.V.: Computational modeling of stochastic processes in electron amplifiers. J. Comput. Electron. 9, 93–102 (2010) CrossRefGoogle Scholar
  16. 16.
    Shymanska, A.V., Evdokimov, V.N.: Effect of parameters of multidyne screen system on image quality. Sov. J. Opt. Technol. 52(7), 393–394 (1985) Google Scholar
  17. 17.
    Siegmund, O., Vallerga, J.V., Tremsin, A.S., Feller, W.B.: High spatial and temporal resolution neutron imaging with microchannel plate detectors. IEEE Trans. Nucl. Sci. 56(3), 1203–1209 (2009) CrossRefGoogle Scholar
  18. 18.
    Tremsin, A.S., Feller, W.B., Dowing, R.G.: Efficiency optimization of microchannel plate neutron imaging detectors. Nucl. Instrum. Methods A 539(1–2), 278–311 (2005) CrossRefGoogle Scholar
  19. 19.
    Vorobyov, Yu.V.: Dispersion figures in electrostatic immersion lenses. J. Tech. Phys. 26, 2269–2280 (1956) Google Scholar
  20. 20.
    Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics. CRC Press, Boca Raton (1998). 1728/1740 Google Scholar
  21. 21.
    Wiza, J.L.: Microchannel plate detectors. Nucl. Instrum. Methods A 162, 587–601 (1979) CrossRefGoogle Scholar
  22. 22.
    Young, D.M.: Iterative Solution of Large Linear Systems. Dover, New York (2003) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2011

Authors and Affiliations

  1. 1.School of Computing and Mathematical SciencesAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations