Journal of Computational Electronics

, Volume 9, Issue 3–4, pp 173–179 | Cite as

Thermoelectric properties of silicon nanostructures



Semiconductor nanostructures are promising candidates for efficient thermoelectric energy conversion, with applications in solid-state refrigeration and power generation. The design of efficient semiconductor thermocouples requires a thorough understanding of both charge and heat transport; therefore, thermoelectricity in silicon-based nanostructures requires that both electronic and thermal transport be treated on an equal footing. In this paper, we present semiclassical simulation of carrier and phonon transport in ultrathin silicon nanomembranes and gated nanoribbons. We show that the thermoelectric response of Si-membrane-based nanostructures can be improved by employing the anisotropy of the lattice thermal conductivity, revealed in ultrathin Si due to boundary scattering, or by using a gate to provide additional carrier confinement and enhance the thermoelectric power factor.


Full-dispersion thermoelectrics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Majumdar, A.: Thermoelectric devices: helping chips to keep their cool. Nat. Nano 4, 214–215 (2009) CrossRefGoogle Scholar
  2. 2.
    Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nano 4, 235–238 (2009) CrossRefGoogle Scholar
  3. 3.
    Hochbaum, A., Chen, R., Delgado, R., Liang, W., Garnett, E., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008) CrossRefGoogle Scholar
  4. 4.
    Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J., Goddard, W.A. III, Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008) CrossRefGoogle Scholar
  5. 5.
    Huang, M., Ritz, C.S., Novakovic, B., Yu, D., Zhang, Y., Flack, F., Savage, D.E., Evans, P.G., Knezevic, I., Liu, F., Lagally, M.G.: Mechano-electronic superlattices in silicon nanoribbons. ACS Nano 3, 721–727 (2009) CrossRefGoogle Scholar
  6. 6.
    DiSalvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703–706 (1999) CrossRefGoogle Scholar
  7. 7.
    Slack, G.A.: CRC Handbook of Thermoelectrics, pp. 407–440. CRC Press, Boca Raton (1995) Google Scholar
  8. 8.
    Chen, R., Hochbaum, A.I., Murphy, P., Moore, J., Yang, P., Majumdar, A.: Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008) CrossRefGoogle Scholar
  9. 9.
    Markussen, T., Jauho, A.-P., Brandbyge, M.: Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics. Phys. Rev. Lett. 103, 055502 (2009) CrossRefGoogle Scholar
  10. 10.
    Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001) CrossRefGoogle Scholar
  11. 11.
    Ryu, H.J., Aksamija, Z., Paskiewicz, D.M., Scott, S.A., Lagally, M.G., Knezevic, I., Eriksson, M.A.: Quantitative determination of contributions to the thermoelectric power factor in Si nanostructures (2010, submitted) Google Scholar
  12. 12.
    Aksamija, Z., Knezevic, I.: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82, 045319 (2010) CrossRefGoogle Scholar
  13. 13.
    Weber, W.: New bond-charge model for the lattice dynamics of diamond-type semiconductors. Phys. Rev. Lett. 33(6), 371–373 (1974) CrossRefGoogle Scholar
  14. 14.
    Weber, W.: Adiabatic bond charge model for the phonons, diamond, Si, Ge, and α-Sn Phys. Rev. B 15, 4789–4803 (1977) CrossRefGoogle Scholar
  15. 15.
    Strauch, D., Dorner, B.: Phonon dispersion GaAs. J. Phys. Chem. 2, 1457–1474 (1990) Google Scholar
  16. 16.
    Prasher, R., Tong, T., Majumdar, A.: Approximate analytical models for phonon specific heat and ballistic thermal conductance of nanowires. Nano Lett. 8, 99–103 (2008) CrossRefGoogle Scholar
  17. 17.
    Dames, C., Chen, G.: Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 95(2), 682–693 (2004) CrossRefGoogle Scholar
  18. 18.
    Mingo, N.: Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68(11), 113308 (2003) CrossRefGoogle Scholar
  19. 19.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Brooks/Cole, Belmont (1976) Google Scholar
  20. 20.
    Gilat, G., Raubenheimer, L.J.: Accurate numerical method for calculating frequency-distribution functions in solids. Phys. Rev. 144(2), 390–395 (1966) CrossRefGoogle Scholar
  21. 21.
    Ziman, J.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, Oxford (1960) MATHGoogle Scholar
  22. 22.
    Ward, A., Broido, D.A.: Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81(8), 085205 (2010) CrossRefGoogle Scholar
  23. 23.
    Morelli, D.T., Heremans, J.P., Slack, G.A.: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III–V semiconductors. Phys. Rev. B 66(19), 195304 (2002) CrossRefGoogle Scholar
  24. 24.
    Tamura, S.-I.: Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27(2), 858–866 (1983) CrossRefGoogle Scholar
  25. 25.
    Broido, D.A., Ward, A., Mingo, N.: Lattice thermal conductivity of silicon from empirical interatomic potentials. Phys. Rev. B 72, 014308 (2005) CrossRefGoogle Scholar
  26. 26.
    Liu, W., Asheghi, M.: Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transf. 128(1), 75–83 (2006) CrossRefGoogle Scholar
  27. 27.
    Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437 (1982) CrossRefGoogle Scholar
  28. 28.
    Knezevic, I., Ramayya, E.B., Vasileska, D., Goodnick, S.M.: Diffusive transport in quasi-2d and quasi-1d electron systems. J. Comput. Theor. Nanosci. 6, 1725–1753 (2009) CrossRefGoogle Scholar
  29. 29.
    Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band kp calculation of the hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94(2), 1079–1095 (2003) CrossRefGoogle Scholar
  30. 30.
    Tsaousidou, M., Butcher, P.N., Triberis, G.P.: Fundamental relationship between the Herring and Cantrell-Butcher formulas for the phonon-drag thermopower of two-dimensional electron and hole gases. Phys. Rev. B 64(16), 165304 (2001) CrossRefGoogle Scholar
  31. 31.
    Donetti, L., Gamiz, F., Rodriguez, N., Godoy, A.: Hole mobility in ultrathin double-gate SOI devices: the effect of acoustic phonon confinement. IEEE Electron. Dev. Lett. 30(12), 1338–1340 (2009) CrossRefGoogle Scholar
  32. 32.
    Neophytou, N., Kim, S.G., Klimeck, G., Kosina, H.: On the bandstructure velocity and ballistic current of ultra-narrow silicon nanowire transistors as a function of cross section size, orientation, and bias. J. Appl. Phys. 107(11), 113701 (2010) CrossRefGoogle Scholar
  33. 33.
    Vo, T.T., Williamson, A.J., Lordi, V., Galli, G.: Atomistic design of thermoelectric properties of silicon nanowires. Nano Lett. 8(4), 1111–1114 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations