Journal of Computational Electronics

, Volume 9, Issue 3–4, pp 262–268 | Cite as

Concurrent multiscale simulation of electronic devices

  • M. Auf der Maur
  • F. Sacconi
  • G. Penazzi
  • G. Romano
  • M. Povolotskyi
  • A. Pecchia
  • A. Di Carlo
Article

Abstract

In this paper we present a multiscale framework for the simulation of electronic devices allowing the coupling of continuum and atomistic models in a transparent way. We introduce the basic features of the TiberCAD simulation software which is based on the multiscale simulation concept, and we show a simulation example to illustrate the basic aspects of a multiscale simulation.

Keywords

Multiscale Quantum Atomistic Tight binding Drift-diffusion Selfconsistent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    TiberCAD simulation package. http://www.tibercad.org
  2. 2.
    Anciaux, G., Coulaud, O., Roman, J.: High performance multiscale simulation for crack propagation. In: Parallel Processing Workshops, 2006. ICPP 2006 Workshops. 2006 International Conference on, pp. 473–480 (2006) Google Scholar
  3. 3.
    Chen, Z.: Finite Element Methods and Their Applications. Springer, Berlin/Heidelberg (2005) MATHGoogle Scholar
  4. 4.
    Chuang, S.L.: Physics of Optoelectronic Devices, 1st edn. Wiley Series in Pure and Applied Optics. Wiley-Interscience, New York (1995) Google Scholar
  5. 5.
    Chuang, S.L., Chang, C.: kp method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491–2504 (1996) CrossRefGoogle Scholar
  6. 6.
    Di Carlo, A.: Microscopic theory of nanostructured semiconductor devices: beyond the envelope-function approximation. Semiconductor Sci. Technol. 18, 1 (2003) CrossRefGoogle Scholar
  7. 7.
    Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995) MATHCrossRefGoogle Scholar
  8. 8.
    Jancu, J.M., Scholz, R., Beltram, F., Bassani, F.: Empirical spds tight-binding calculation for cubic semiconductors; general method and material parameters. Phys. Rev. B 57(11), 6493 (1998) CrossRefGoogle Scholar
  9. 9.
    Keating, P.: Effect of invariance requirements on the elastic strain energy of crystal with application to the diamond structure. Phys. Rev. 145, 673 (1966) CrossRefGoogle Scholar
  10. 10.
    Pecchia, A., Di Carlo, A.: Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 67, 1497–1561 (2004) CrossRefGoogle Scholar
  11. 11.
    Povolotskyi, M., Di Carlo, A.: Elasticity theory of pseudomorphic heterostructures grown on substrates of arbitrary thickness. J. Appl. Phys. 100, 063514 (2006) CrossRefGoogle Scholar
  12. 12.
    Sreekant, V.J., Narumanchi, J.Y.M., Amon, C.H.: Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronic. Heat Mass Transf. 42(6), 478–491 (2006) CrossRefGoogle Scholar
  13. 13.
    Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001) CrossRefGoogle Scholar
  14. 14.
    Wachutka, G.K.: Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput.-Aided Des. 11, 1141–1149 (1990) CrossRefGoogle Scholar
  15. 15.
    Zhang, S., Khare, R., Lu, Q., Belytschko, T.: A bridging domain and strain computation method for coupled atomistic-continuum modelling of solids. Int. J. Numer. Methods Eng. 70, 913–933 (2007) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  • M. Auf der Maur
    • 1
  • F. Sacconi
    • 1
  • G. Penazzi
    • 1
  • G. Romano
    • 1
  • M. Povolotskyi
    • 1
    • 2
  • A. Pecchia
    • 1
  • A. Di Carlo
    • 1
  1. 1.Dept. of Electronic EngineeringUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations