Journal of Computational Electronics

, Volume 9, Issue 3–4, pp 211–217 | Cite as

A semiclassical transport model for quantum cascade lasers based on the Pauli master equation

  • G. MilovanovicEmail author
  • H. Kosina


A semiclassical transport description based on the Pauli master equation (PME) is presented. A Monte Carlo simulator has been developed, which is an efficient approach for solving the PME and includes the most relevant scattering mechanisms. The proposed method has been used to simulate Quantum Cascade Lasers (QCLs) and allows the study of charge transport in an efficient way. As a prototypical example, we investigate a QCL in the THz region.


Pauli master equation Monte Carlo Quantum cascade laser Semiclassical transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Esaki, L., Tsu, R.: Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61 (1970) CrossRefGoogle Scholar
  2. 2.
    Kazarinov, R.F., Suris, R.A.: Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 5, 707 (1971) Google Scholar
  3. 3.
    Gmachl, C., Capasso, F., Sivco, D.L., Cho, A.Y.: Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64, 1533 (2001) CrossRefGoogle Scholar
  4. 4.
    Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553 (1994) CrossRefGoogle Scholar
  5. 5.
    Lee, S.C., Wacker, A.: Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures. Phys. Rev. B 66, 245314 (2002) CrossRefGoogle Scholar
  6. 6.
    Iotti, R.C., Rossi, F.: Nature of charge transport in quantum-cascade lasers. Phys. Rev. Lett. 87, 146603 (2001) CrossRefGoogle Scholar
  7. 7.
    Matyas, A., Kubis, T., Lugli, P., Jirauschek, C.: Carrier transport in THz quantum cascade lasers: are Green’s functions necessary? J. Phys. Conf. Ser. 193, 012026 (2009) CrossRefGoogle Scholar
  8. 8.
    Callebaut, H., Hu, Q.: Importance of coherence for electron transport in terahertz quantum cascade lasers. J. Appl. Phys. 98, 104505 (2005) CrossRefGoogle Scholar
  9. 9.
    Fischetti, M.V.: Theory of electron transport in small semiconductor devices using the Pauli master equation. J. Appl. Phys. 83, 270 (1998) CrossRefGoogle Scholar
  10. 10.
    Van Hove, L.: Quantum-mechanical perturbations giving rise to a statistical transport equation. Physica XXI, 517 (1955) Google Scholar
  11. 11.
    Zaccaria, R.P., Iotti, R.C., Rossi, F.: Monte Carlo simulation of hot-carrier phenomena in open quantum devices: a kinetic approach. Appl. Phys. Lett. 84, 139 (2004) CrossRefGoogle Scholar
  12. 12.
    Fischetti, M.V.: Master-equation approach to the study of electronic transport in small semiconductor devices. Phys. Rev. B 59, 4901 (1999) CrossRefGoogle Scholar
  13. 13.
    Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (2008) zbMATHCrossRefGoogle Scholar
  14. 14.
    Iotti, R.C., Ciancio, E., Rossi, F.: Quantum transport theory for semiconductor nanostructures: a density-matrix formulation. Phys. Rev. B 72, 125347 (2005) CrossRefGoogle Scholar
  15. 15.
    Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1996) Google Scholar
  16. 16.
    Iotti, R.C., Rossi, F.: Microscopic theory of semiconductor-based optoelectronic devices. Rep. Prog. Phys. 68, 2533 (2005) CrossRefGoogle Scholar
  17. 17.
    Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745 (1990) CrossRefGoogle Scholar
  18. 18.
    Rossi, F., Kuhn, T.: Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895 (2002) CrossRefGoogle Scholar
  19. 19.
    Raichev, O.E.: Phonon-assisted Γ–X transfer in (001)-grown GaAs/AlAs superlattices. Phys. Rev. B 49, 5448 (1994) CrossRefGoogle Scholar
  20. 20.
    Bannov, N., Aristov, V., Mitin, V., Stroscio, M.A.: Electron relaxation times due to the deformation-potential interaction of electrons with confined acoustic phonons in a free-standing quantum well. Phys. Rev. B 51, 9930 (1995) CrossRefGoogle Scholar
  21. 21.
    Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645 (1983) CrossRefGoogle Scholar
  22. 22.
    Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. Taylor & Francis, London (1988) zbMATHGoogle Scholar
  23. 23.
    Akarsu, M., Özbas, Ö.: Monte Carlo simulation for electron dynamics in semiconductor devices. Math. Comput. Appl. 10, 19 (2005) Google Scholar
  24. 24.
    Benz, A., Fasching, G., Andrews, A.M., Martl, M., Unterrainer, K., Roch, T., Schrenk, W., Golka, S., Strasser, G.: Influence of doping on the performance of terahertz quantum-cascade lasers. Appl. Phys. Lett. 90, 101107 (2007) CrossRefGoogle Scholar
  25. 25.
    Adachi, S.: GaAs, AlAs, and AlxGa1−xAs: material parameters for use in research and device applications. J. Appl. Phys. 58, R1 (1985) CrossRefGoogle Scholar
  26. 26.
    Madelung, O.: Semiconductors: Basic Data. Springer, Berlin (1996) Google Scholar
  27. 27.
    Pfluegl, C., Schrenk, W., Anders, S., Strasser, G., Becker, C., Sirtori, C., Bonetti, Y., Muller, A.: High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers. Appl. Phys. Lett. 83, 4698 (2003) CrossRefGoogle Scholar
  28. 28.
    Rihani, S., Page, H., Beere, H.E., Ritchie, D.A., Pepper, M.: Design and simulation of a THz QCL based on Γ–X depopulation mechanism. Physica E 41, 1240 (2009) Google Scholar
  29. 29.
    Milovanovic, G., Baumgartner, O., Kosina, H.: Design of a MIR QCL based on intervalley electron transfer: a Monte Carlo approach. In: Proceedings of the 10th International Conference on Mid-Infrared Optoelectronics: Materials and Devices (2010) Google Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  1. 1.Institute for MicroelectronicsTU WienWienAustria

Personalised recommendations