Advertisement

Journal of Computational Electronics

, Volume 10, Issue 1–2, pp 163–178 | Cite as

Self-heating in a coupled thermo-electric circuit-device model

  • Markus Brunk
  • Ansgar Jüngel
Article

Abstract

The self-heating of a coupled thermo-electric circuit-semiconductor system is modeled and numerically simulated. The system consists of semiconductor devices, an electric network with resistors, capacitors, inductors, and voltage sources, and a thermal network. The flow of the charge carriers is described by the energy-transport equations coupled to a heat equation for the lattice temperature. The electric circuit is modeled by the network equations from modified nodal analysis coupled to a thermal network describing the evolution of the temperatures in the lumped and distributed circuit elements. The three subsystems are coupled through thermo-electric, electric circuit-device, and thermal network-device interface conditions. The resulting system of nonlinear partial differential-algebraic equations is discretized in time by the 2-stage backward difference formula and in space by a mixed finite-element method. Numerical simulations of a one-dimensional ballistic diode and a frequency multiplier circuit containing a pn-junction diode illustrate the heating of the semiconductor device and circuit resistors.

Keywords

Energy-transport equations Lattice heating Thermal network Mixed finite-element method Partial differential-algebraic equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einwich, K., Schwarz, P., Trappe, P., Zojer, H.: Simulatorkopplung für den Entwurf komplexer Schaltkreise der Nachrichtentechnik. In: 7th ITG-Fachtagung „Mikroelektronik für die Informationstechnik“, pp. 139–144 (1996) Google Scholar
  2. 2.
    Litsios, J., Schmithüsen, B., Krumbein, U., Schenk, A., Lyumkis, E., Polsky, B., Fichtner, W.: DESSIS 3.0 Manual. ISE Integrated Systems Engineering, Zürich (1996) Google Scholar
  3. 3.
    Selva Soto, M., Tischendorf, C.: Numerical analysis of DAEs from coupled circuit and semiconductor simulation. Appl. Numer. Math. 53, 471–488 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Brunk, M., Jüngel, A.: Numerical coupling of electric circuit equations with transient energy-transport equations for semiconductors. SIAM J. Sci. Comput. 30, 873–894 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Adler, M.: Accurate calculations of the forward drop and power dissipation in thyristors. IEEE Trans. Electr. Dev. 25, 16–22 (1978) CrossRefGoogle Scholar
  6. 6.
    Gaur, S., Navon, D.: Two-dimensional carrier flow in a transistor structure under nonisothermal conditions. IEEE Trans. Electr. Dev. 23, 50–57 (1976) CrossRefGoogle Scholar
  7. 7.
    Sharma, D., Ramanathan, K.: Modeling thermal effects on MOS I–V characteristics. IEEE Electr. Dev. Lett. 4, 362–364 (1983) CrossRefGoogle Scholar
  8. 8.
    Chryssafis, A., Love, W.: A computer-aided analysis of one-dimensional thermal transients in n-p-n power transistors. Solid-State Electron. 22, 249–256 (1979) CrossRefGoogle Scholar
  9. 9.
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984) Google Scholar
  10. 10.
    Wachutka, G.: Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput. Aided Des. 9, 1141–1149 (1990) CrossRefGoogle Scholar
  11. 11.
    Albinus, G., Gajewski, H., Hünlich, R.: Thermodynamic design of energy models of semiconductor devices. Nonlinearity 15(2), 367–383 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bartel, A., Günther, M.: Multirate co-simulation of first order thermal models in electric circuit design. In: Schilders, W., et al. (eds.) Scientific Computing in Electrical Engineering. Proceedings SCEE 2002, pp. 23–28. Springer, Berlin (2002) Google Scholar
  13. 13.
    Bartel, A., Günther, M.: From SOI to abstract electric-thermal-1d multiscale modeling for first order thermal effects. Math. Comput. Modell. Dyn. Syst. 9, 25–44 (2003) zbMATHCrossRefGoogle Scholar
  14. 14.
    Ali, G., Carini, M.: Energy-transport models for semiconductor devices and their coupling with electric networks. In: Applied and Industrial Mathematics in Italy II. Ser. Adv. Math. Appl. Sci., vol. 75, pp. 13–24. World Scientific, Singapore (2007) Google Scholar
  15. 15.
    Grasser, K.-T.: Mixed-Mode Device Simulation. PhD thesis, TU Wien (1999) Google Scholar
  16. 16.
    Knaipp, M.: Modellierung von Temperatureinflüssen in Halbleiterbauelementen. PhD thesis, TU Wien (1998) Google Scholar
  17. 17.
    Wachutka, G.: Consistent treatment of carrier emission and capture kinetics in electrothermal and energy transport models. Microelectr. J. 26, 307–315 (1995) CrossRefGoogle Scholar
  18. 18.
    Feldmann, U.: Numerical simulation of multiscale models for radio frequency circuits in the time domain. In: Jäger, W., Krebs, H.-J. (eds.) Mathematics—Key Technology for the Future. Springer, Berlin (2008) Google Scholar
  19. 19.
    Ben Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37, 3308–3333 (1996) MathSciNetGoogle Scholar
  20. 20.
    Degond, P., Jüngel, A., Pietra, P.: Numerical discretization of energy-transport models for semiconductors with non-parabolic band structure. SIAM J. Sci. Comput. 22, 986–1007 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes in Physics. Springer, Berlin (2009) CrossRefGoogle Scholar
  22. 22.
    Tischendorf, C.: Topological index calculation of differential-algebraic equations in circuit simulation. Surv. Math. Industr. 8, 187–199 (1999) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Tischendorf, C.: Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Modeling and numerical analysis. Habilitation thesis at the Humboldt University of Berlin (2003) Google Scholar
  24. 24.
    Bartel, A.: Partial differential-algebraic models in chip design—Thermal and semiconductor problems. PhD thesis, Universität Karlsruhe, Germany (2003) Google Scholar
  25. 25.
    Gajewski, H., Bandelow, U., Hünlich, R.: Fabry-perot lasers: thermodynamic-based modeling. In: Piprek, J. (ed.) Optoelectronic Devices. Advanced Simulation and Analysis, pp. 63–85. Springer, Berlin (2005) Google Scholar
  26. 26.
    Brunk, M., Jüngel, A.: Simulation of thermal effects in optoelectronic devices using coupled energy-transport and circuit models. M3AS 18(12), 2125–2150 (2009) Google Scholar
  27. 27.
    Chen, D., Kan, E., Ravaioli, U., Shu, C., Dutton, R.: An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects. IEEE Electr. Dev. Lett. 13, 26–28 (1992) CrossRefGoogle Scholar
  28. 28.
    Kosina, H., Grasser, T., Tang, T.-W., Selberherr, S.: A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91, 251–274 (2003) CrossRefGoogle Scholar
  29. 29.
    Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990) zbMATHGoogle Scholar
  30. 30.
    Anile, V. Romano A.M., Russo, G.: Extended hydrodynamical model of carrier transport in semiconductors. SIAM J. Appl. Math. 61, 74–101 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Yamnahakki, A.: Second-order boundary conditions for the drift-diffusion equations for semiconductors. Math. Models Methods Appl. Sci. 5, 429–455 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Hiqueras, I., März, R.: Differential algebraic systems with properly stated leading terms. Comput. Math. Appl. 48, 215–235 (2004) MathSciNetCrossRefGoogle Scholar
  33. 33.
    März, R.: Differential algebraic systems anew. Appl. Numer. Math. 42, 315–335 (2004) CrossRefGoogle Scholar
  34. 34.
    Massobrio, G., Antognetti, P.: Semiconductor Device Modeling with SPICE, 2nd edn. McGraw-Hill, New York (1993) Google Scholar
  35. 35.
    Marini, D., Pietra, P.: New mixed finite element schemes for current continuity equations. COMPEL 9, 257–268 (1990) MathSciNetzbMATHGoogle Scholar
  36. 36.
    Levinshtein, M.: Handbook Series on Semiconductor Parameters. World Scientific, London (1996) Google Scholar
  37. 37.
    Medina, E., Pagani, M.: Multi-physics modeling and numerical simulation of electrothermal effects in semiconductor devices. Master’s thesis, Politecnico di Milano, Italy (2006) Google Scholar
  38. 38.
    Romano, V., Anile, A.M., Marrocco, A., Sellier, J.M.: 2d numerical simulation of the mep energy-transport model with a mixed finite element scheme. J. Comutational Electron. 4, 231–259 (2005) Google Scholar
  39. 39.
    Jüngel, A., Tang, S.: A relaxation scheme for hydrodynamic equations for semconductors. Appl. Numer. Math. 43, 229–252 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Holst, S., Jüngel, A., Pietra, P.: An adaptive mixed scheme for energy-transport simulations of field-effect transistors. SIAM J. Sci. Comput. 25, 1698–1716 (2004) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  1. 1.Department C, Institute for MathematicsBergische Universität WuppertalWuppertalGermany
  2. 2.Institute for Analysis and Scientific ComputingVienna University of TechnologyWienAustria

Personalised recommendations