Journal of Computational Electronics

, Volume 9, Issue 3–4, pp 146–152 | Cite as

Stochastic modeling of bipolar resistive switching in metal-oxide based memory by Monte Carlo technique

  • Alexander MakarovEmail author
  • Viktor Sverdlov
  • Siegfried Selberherr


A stochastic model of the resistive switching mechanism in bipolar metal-oxide based resistive random access memory (RRAM) is presented. The distribution of electron occupation probabilities obtained is in agreement with previous work. In particular, a low occupation region is formed near the cathode. Our simulations of the temperature dependence of the electron occupation probability near the anode and the cathode demonstrate a high robustness of the low occupation region. This result indicates that a decrease of the switching time with increasing temperature cannot be explained only by reduced occupations of the vacancies in the low occupation region, but is related to an increase of the mobility of the oxide ions. A hysteresis cycle of RRAM switching simulated with the stochastic model including the ion dynamics is in good agreement with experimental results.


Resistive switching mechanism Stochastic model Monte Carlo method RRAM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kugeler, C., Nauenheim, C., Meier, M., Rudiger, A., Waser, R.: Fast resistance switching of TiO2 and MSQ thin films for non-volatile memory applications (RRAM). In: NVM Tech. Symp., p. 6 (2008) Google Scholar
  2. 2.
    Yu, L.E., Kim, S., Ryu, M.K., Choi, S.Y., Choi, Y.K.: Structure effects on resistive switching of Al/TiOx/Al devices for RRAM applications. IEEE Electron Device Lett. 29, 331 (2008) CrossRefGoogle Scholar
  3. 3.
    Jeong, D.S., Schroeder, H., Breuer, U., Waser R, R.: Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104, 123716 (2008) CrossRefGoogle Scholar
  4. 4.
    Shima, H., Zhong, N., Akinaga, H.: Switchable rectifier built with Pt/TiOx/Pt trilayer. Appl. Phys. Lett. 94, 082905 (2009) CrossRefGoogle Scholar
  5. 5.
    Chen, Y.S., Wu, T.Y., Tzeng, P.J.: Forming-free HfO2 bipolar RRAM device with improved endurance and high speed operation. In: Symp. on VLSI Tech., p. 37 (2009) Google Scholar
  6. 6.
    Dong, R., Lee, D.S., Xiang, W.F., Oh, S.J., Seong, D.J., Heo, S.H.: Reproducible hysteresis and resistive switching in Metal-CuxO-Metal heterostructures. Appl. Phys. Lett. 90, 42107/1-3 (2007) Google Scholar
  7. 7.
    Seo, S., Lee, M.J., Seo, D.H., Choi, S.K., Suh, D.S., Joung, Y.S., Yoo, I.K., Byun, I.S., Hwang, I.R., Kim, S.H., Park, B.H.: Conductivity switching characteristics and reset currents in NiO films. Appl. Phys. Lett. 86 (2005) Google Scholar
  8. 8.
    Lee, S., Kim, H., Yun, D.J., Rhee, S.W., Yong, K.: Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices. Appl. Phys. Lett. 95, 262113 (2009) CrossRefGoogle Scholar
  9. 9.
    Watanabe, Y., Bednorz, J.G., Bietsch, A., Gerber, Ch., Widmer, D., Beck, A., Wind, S.J.: Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78, 3738 (2001) CrossRefGoogle Scholar
  10. 10.
    Lin, C.C., Lin, C.Y., Lin, M.H.: Voltage-polarity-independent and high-speed resistive switching properties of V-doped SrZrO3 thin films. IEEE Trans. Electron Devices 54, 3146 (2007) CrossRefGoogle Scholar
  11. 11.
    Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y.: Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073 (2004) CrossRefGoogle Scholar
  12. 12.
    Lee, B.C., Zhou, P., Yang, J., Zhang, Y.T., Zhao, B., Ipek, E., Mutlu, O., Burger, D.: Phase-change technology and the future of main memory. IEEE MICRO 30, 131 (2010) CrossRefGoogle Scholar
  13. 13.
    Kryder, M.H., Kim, C.S.: After hard drives—what comes next? IEEE Trans. Magn. 45, 3406 (2009) CrossRefGoogle Scholar
  14. 14.
    Akarvardar, K.: Ultralow voltage crossbar nonvolatile memory based on energy-reversible NEM switches. IEEE Electron Device Lett. 30, 626 (2009) CrossRefGoogle Scholar
  15. 15.
    Dong, X., Wu, X., Sun, G., Xie, Y., Li, H., Chen, Y.: Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In: IEEE Design Automation Conf., p. 554 (2008) Google Scholar
  16. 16.
    Bailey, R., Fox, G., Eliason, J., Depner, M., Kim, D., Jabillo, E., Groat, J., Walbert, J., Moise, T., Summerfelt, S., Udayakumar, K.R., Rodriquez, J., Remack, K., Boku, K., Gertas, J.: FRAM memory technology—advantages for low power, fast write, high endurance applications. Comput. Des., VLSI Comput. Process., 485 (2005) Google Scholar
  17. 17.
    Li, H., Xi, H., Chen, Y., Stricklin, J., Wang, X., Zhang, T.: Thermal-assisted spin transfer torque memory (STT-RAM) cell design exploration. In: Symp. on VLSI Tech., p. 217 (2009) Google Scholar
  18. 18.
    Parkin, S.P. et al., Magnetic domain-wall racetrack memory. Science 320, 190 (2008) CrossRefGoogle Scholar
  19. 19.
    Fujii, T., Kawasaki, M., Sawa, A., Akoh, H., Kawazoe, Y., Tokura, Y.: Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86, 012107 (2005) CrossRefGoogle Scholar
  20. 20.
    Nian, Y.B., Strozier, J., Wu, N.J., Chen, X., Ignatiev, A.: Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403/1-4 (2007) CrossRefGoogle Scholar
  21. 21.
    Wu, S.X., Xu, L.M., Xing, X.J.: Reverse-bias-induced bipolar resistance switching in Pt/TiO2/SrTi0.99Nb0.01O3/Pt devices. Appl. Phys. Lett. 93, 043502/1-3 (2008) Google Scholar
  22. 22.
    Szot, K., Speier, W., Bihlmayer, G., Waser, R.: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312 (2006) CrossRefGoogle Scholar
  23. 23.
    Nishi, Y., Jameson, J.R.: Recent progress in resistance change memory. In: Dev. Res. Conf., p. 271 (2008) Google Scholar
  24. 24.
    Gao, B., Sun, B., Zhang, H., Liu, L., Liu, X., Han, R., Kang, J., Yu, B.: Unified physical model of bipolar oxide-based resistive switching memory. IEEE Electron Device Lett. 30, 1326 (2009) CrossRefGoogle Scholar
  25. 25.
    Rozenberg, M.J., Inoue, I.H., Sanchez, M.J.: Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92, 178302-1 (2004) CrossRefGoogle Scholar
  26. 26.
    Kinoshita, K., Tamura, T., Aso, H., Noshiro, H., Yoshida, C., Aoki, M., Sugiyama, Y., Tanaka, H.: New model proposed for switching mechanism of ReRAM. In: IEEE Non-Volatile Semicond. Memory Workshop, p. 84 (2006) Google Scholar
  27. 27.
    Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L., Spiga, S., Wiemer, C., Perego, M., Fanciulli, M.: Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM. In: IEDM Tech. Dig., p. 775 (2007) Google Scholar
  28. 28.
    Kim, S., Choi, Y.K.: A comprehensive study of the resistive switching mechanism in Al/TiOx/TiO2/Al-structured RRAM. IEEE Trans. Electron Devices 56, 3049 (2009) CrossRefGoogle Scholar
  29. 29.
    Sverdlov, V., Korotkov, A.N., Likharev, K.K.: Shot-noise suppression at two-dimensional hopping. Phys. Rev. B 63, 081302 (2001) CrossRefGoogle Scholar
  30. 30.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: the Art of Scientific Computing. Cambridge University Press, Cambridge (1992) zbMATHGoogle Scholar
  31. 31.
    Schmidt-Mende, L., MacManus-Driscoll, J.L.: ZnO-nanostructures, defects, and devices. Mater. Today 10, 40 (2007) CrossRefGoogle Scholar
  32. 32.
    Derrida, B.: An exactly soluble non-equilibrium system: the asymmetric simple exclusion process. Phys. Rep. 301, 65 (1998) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  • Alexander Makarov
    • 1
    Email author
  • Viktor Sverdlov
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for MicroelectronicsVienna University of TechnologyViennaAustria

Personalised recommendations