Journal of Computational Electronics

, Volume 9, Issue 1, pp 16–30 | Cite as

Analysis of field-driven clocking for molecular quantum-dot cellular automata based circuits

Article

Abstract

Molecular quantum-dot cellular automaton (QCA) offers an alternative paradigm for computing at the nano-scale. QCA circuits require an external clock which can be generated using a network of submerged electrodes to synchronize information flow and provide the required power to drive the computation. In this paper, the effect of electrode separation and applied potential on the likelihood of different QCA cell states of molecular cells located above and in between two adjacent electrodes is analyzed. Using this analysis, estimates of operational ranges are developed for the placement, applied potential, and relative phase between adjacent clocking electrodes to ensure that only those states that are used in the computation are energetically favorable. Conclusions on the trade-off between cell size, cell-to-cell distance, and applied clocking potential are drawn and the temperature dependence of the operation of fundamental QCA building blocks is considered.

Keywords

Clocking QCA Quantum cellular automata Power Molecular electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993) CrossRefGoogle Scholar
  2. 2.
    Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4, 115–118 (2005) CrossRefGoogle Scholar
  3. 3.
    Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003) CrossRefGoogle Scholar
  4. 4.
    Jiao, J., Long, G.J., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 125(25), 7522–7523 (2003) CrossRefGoogle Scholar
  5. 5.
    Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003) CrossRefGoogle Scholar
  6. 6.
    Jin, Z.: Fabrication and measurement of molecular quantum cellular automata (QCA) device. Master’s Thesis, University of Notre Dame, Notre Dame, IN 46556 (2006) Google Scholar
  7. 7.
    Li, Z., Fehlner, T.P.: Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a au surface by an organic linker. Inorg. Chem. 42(18), 5715–5721 (2003) CrossRefGoogle Scholar
  8. 8.
    Li, Z., Beatty, A.M., Fehlner, T.P.: Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding. Inorg. Chem. 42(18), 5707–5714 (2003) CrossRefGoogle Scholar
  9. 9.
    Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125(49), 15250–15259 (2003) CrossRefGoogle Scholar
  10. 10.
    Macucci, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F.E., Single, C., Wetekam, G., Kern, D.P.: A QCA cell in silicon-on-insulator technology: theory and experiment. Superlattices Microstruct. 34(3), 205–211 (2004) CrossRefGoogle Scholar
  11. 11.
    Orlov, A.O., Kummamuru, R.K., Ramasubramaniam, R., Lent, C.S., Berstein, G.H., Snider, G.L.: Clocked quantum-dot cellular automata shift register. Surf. Sci. 532–535, 1193–1198 (2003) CrossRefGoogle Scholar
  12. 12.
    Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999) CrossRefGoogle Scholar
  13. 13.
    Amlani, I., Orlov, A.O., Snider, G.L., Lent, C.S.: Demonstration of a functional quantum-dot cellular automata cell. J. Vac. Sci. Technol. B 16, 3795–3799 (1998) CrossRefGoogle Scholar
  14. 14.
    Lent, C.S., Snider, G.L., Bernstein, G.H., Porod, W., Orlov, A.O., Lieberman, M., Fehlner, T., Niemier, M.T., Kogge, P.: Quantum-Dot Cellular Automata. Kluwer Academic, Dordrecht (2003) Google Scholar
  15. 15.
    Snider, G.L., Amlani, I., Orlov, A.O., Toth, G., Bernstein, G., Lent, C.S., Merz, J.L., Porod, W.: Quantum-dot cellular automata: line and majority gate logic. Jpn. J. Appl. Phys. 38, 7227–7229 (1999) CrossRefGoogle Scholar
  16. 16.
    Kummamuru, R.V., Timler, J., Toth, G., Lent, C.S., Ramasubramaniam, R., Orlov, A.O., Bernstein, G.H.: Power gain and dissipation in a quantum-dot cellular automata latch. Appl. Phys. Lett. 81, 1332–1334 (2002) CrossRefGoogle Scholar
  17. 17.
    Toth, G., Lent, C.S.: Quasiadiabatic switching of metal-island quantum-dot cellular automata. J. Appl. Phys. 85(5), 2977–2984 (1999) CrossRefGoogle Scholar
  18. 18.
    Imre, A., Csaba, G., Ji, L., Orlov, A.O., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006) CrossRefGoogle Scholar
  19. 19.
    György, C., et al.: Nanocomputing by field-coupled nanomagnets. IEEE Trans. Nanotechnol. 1(4), 209–213 (2002) CrossRefGoogle Scholar
  20. 20.
    György, C., Porod, W.: Simulation of field coupled computing architectures based on magnetic dot arrays. J. Comput. Electron. 1(1), 87–91 (2002) CrossRefGoogle Scholar
  21. 21.
    Parish, M.C.B.: Modeling of physical constraints on bistable magnetic quantum cellular automata. Ph.D. Thesis, University of London (2003) Google Scholar
  22. 22.
    Welland, M.E., Cowburn, R.P.: Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000) CrossRefGoogle Scholar
  23. 23.
    Bernstein, G.H., Imre, A., Metlushko, V., Ji, L., Orlov, A.O., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectron. J. 36, 619–624 (2005) CrossRefGoogle Scholar
  24. 24.
    Haider, M., et al.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009) CrossRefGoogle Scholar
  25. 25.
    Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006) CrossRefGoogle Scholar
  26. 26.
    Walus, K., Dysart, T., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004) CrossRefGoogle Scholar
  27. 27.
    Walus, K., Budiman, R.A., Jullien, G.A.: Split current quantum dot cellular automata—modeling and simulation. IEEE Trans. Nanotechnol. 3(2), 249–255 (2004) CrossRefGoogle Scholar
  28. 28.
    Walus, K., Schulhof, G.: QCADesigner homepage. http://www.qcadesigner.ca/ (2001) (Online)
  29. 29.
    Walus, K., Mazur, M., Schulhof, G., Jullien, G.A.: Simple 4-bit processor based on quantum-dot cellular automata (QCA). In: Proc. of Application Specific Architectures, and Processors Conference, pp. 288–293, July 2005 Google Scholar
  30. 30.
    Walus, K., Schulhof, G., Zhang, R., Wang, W., Jullien, G.A.: Circuit design based on majority gates for applications with quantum-dot cellular automata. In: Proc. of IEEE Asilomar Conference on Signals, Systems, and Computers, November 2004 Google Scholar
  31. 31.
    Walus, K., Schulhof, G., Jullien, G.A.: High level exploration of quantum-dot cellular automata (QCA). In: Proc. of IEEE Asilomar Conference on Signals, Systems, and Computers, November 2004 Google Scholar
  32. 32.
    Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19(5), 1752–1755 (2001) CrossRefGoogle Scholar
  33. 33.
    Blair, E.P., Lent, C.S.: An architecture for molecular computing using quantum-dot cellular automata. In: Proc. of the Third IEEE Conference on Nanotechnology, pp. 402–405 (2003) Google Scholar
  34. 34.
    Blair, E.P.: Tools for the design and simulation of clocked molecular quantum-dot cellular automata circuits. Master’s Thesis, University of Notre Dame, Notre Dame, IN 46556 (2003) Google Scholar
  35. 35.
    Data flow in molecular QCA: Logic can “sprint,” but the memory wall can still be a “hurdle” (2005) Google Scholar
  36. 36.
    Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002) CrossRefGoogle Scholar
  37. 37.
    Lent, C., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006) CrossRefGoogle Scholar
  38. 38.
    Walus, K., Budiman, R.A., Jullien, G.A.: Impurity charging in semiconductor quantum-dot cellular automata. Nanotechnology 16(11), 2525–2529 (2005) CrossRefGoogle Scholar
  39. 39.
    Walus, K.: Design and simulation of quantum-dot cellular automata devices and circuits. Ph.D. Thesis, University of Alberta, September 2005 Google Scholar
  40. 40.
    Li, Z., Lieberman, M.: Axial reactivity of soluble silicon(IV) phthalo-cyanines. Inorg. Chem. 40, 932–939 (2001) CrossRefGoogle Scholar
  41. 41.
    Demadis, K.D., Hartshorn, C.M., Meyer, T.J.: The localized-to-de-localized transition in mixed-valence chemistry. Chem. Rev. 101, 2655–2685 (2001) CrossRefGoogle Scholar
  42. 42.
    Lu, Y., Liu, M., Lent, C.S.: Molecular electronics—from structure to dynamics. In Proc. of the Sixth IEEE Conference on Nanotechnolgy (2006) Google Scholar
  43. 43.
    Lu, Y., Liu, M., Lent, C.S.: Molecular quantum-dot cellular automata: from structure to dynamics. J. Appl. Phys. 102, 034311 (2007) CrossRefGoogle Scholar
  44. 44.
    Lu, Y., Lent, C.: A metric for characterizing the bistability of molecular quantum-dot cellular automata. Nanotechnology 19, 155703 (2008) CrossRefGoogle Scholar
  45. 45.
    Lent, C.S.: Re: QCA Related Questions. E-mail to K. Walus. 11 November 2008 Google Scholar
  46. 46.
    Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron. Devices 50, 1890–1896 (2003) CrossRefGoogle Scholar
  47. 47.
    Sadiku, M.: Elements of Electromagnetics, 3rd edn. Oxford University Press, London (1994) Google Scholar
  48. 48.
    Whites, K.W., Paul, C.R., Nasar, S.A.: Introduction to Electromagnetic Fields, 3rd edn. McGraw-Hill, Cambridge (1998) Google Scholar
  49. 49.
    Nojeh, A., Ural, A., Pease, R.F., Dai, H.: Electric-field-directed growth of carbon nanotubes in two dimensions. J. Vac. Sci. Technol. B 22(6), 3421–3425 (2004) CrossRefGoogle Scholar
  50. 50.
    Visconti, P., Della Torre, A., Maruccio, G., D’Amone, E., Bramanti, A., Cingolani, R., Rinaldi, R.: The fabrication of sub-10 nm planar electrodes and their use for a molecule-based transistor. Nanotechnology 15, 807–811 (2004) CrossRefGoogle Scholar
  51. 51.
    Liu, K., Avouris, Ph., Bucchignano, J., Martel, R., Sun, S., Michi, J.: Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography. Appl. Phys. Lett. 5(80), 865–867 (2002) CrossRefGoogle Scholar
  52. 52.
    Macucci, M., Iannaccone, G., Francaviglia, S., Pellegrini, B.: Semiclassical simulation of quantum cellular automaton circuits. Int. J. Circuit Theory Appl. 29(1), 37–47 (2001) CrossRefGoogle Scholar
  53. 53.
    Ungarelli, C., Francaviglia, S., Macucci, M., Iannaccone, G.: Thermal behavior of quantum cellular automaton wires. J. Appl. Phys. 87(10), 7320–7325 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations