Journal of Computational Electronics

, Volume 8, Issue 3–4, pp 267–286 | Cite as

Ballistic quantum transport using the contact block reduction (CBR) method

An introduction
  • Stefan Birner
  • Christoph Schindler
  • Peter Greck
  • Matthias Sabathil
  • Peter Vogl


The contact block reduction (CBR) method is a variant of the nonequilibrium Green’s function formalism and can be used to describe quantum transport in the ballistic limit very efficiently. We present a numerical implementation of a charge self-consistent version of the CBR algorithm. We show in detail how to calculate the electronic properties of open quantum systems such as the transmission function, the local density of states and the carrier density. Several 1D and 2D examples are provided to illustrate the key points. The CBR method is a very powerful tool to tackle the challenge of calculating transport in the ballistic limit for 3D devices of arbitrary shape and with an arbitrary number of contacts.


Ballistic quantum transport Nonequilibrium Green’s function formalism NEGF Transmission function Landauer-Büttiker formalism Device simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005) MATHGoogle Scholar
  2. 2.
    Kubis, T., Yeh, C., Vogl, P., Benz, A., Fasching, G., Deutsch, C.: Theory of non-equilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers. Phys. Rev. B 79, 195323 (2009) CrossRefGoogle Scholar
  3. 3.
    Mamaluy, D., Sabathil, M., Vogl, P.: Efficient method for the calculation of ballistic quantum transport. J. Appl. Phys. 93, 4628 (2003) CrossRefGoogle Scholar
  4. 4.
    The nextnano software can be obtained from and A demo that includes a Windows executable and the input files of the CBR examples presented in the figures of this article can be downloaded from this link: (Online Resource)
  5. 5.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995) Google Scholar
  6. 6.
    Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Develop. 32, 306 (1988) MathSciNetGoogle Scholar
  7. 7.
    Landauer, R.: Conductance from transmission: common sense points. Phys. Scr. T42, 110 (1992) CrossRefGoogle Scholar
  8. 8.
    Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761 (1986) CrossRefGoogle Scholar
  9. 9.
    Büttiker, M.: Symmetry of electrical conduction. IBM J. Res. Develop. 32, 317 (1988) CrossRefGoogle Scholar
  10. 10.
    Di Carlo, A., Vogl, P., Pötz, W.: Theory of Zener tunneling and Wannier-Stark states in semiconductors. Phys. Rev. B 50, 8358 (1994) CrossRefGoogle Scholar
  11. 11.
    Büttiker, M.: Small normal-metal loop coupled to an electron reservoir. Phys. Rev. B 32, 1846 (1985) CrossRefGoogle Scholar
  12. 12.
    Venugopal, R., Paulsson, M., Goasguen, S., Datta, S., Lundstrom, M.S.: A simple quantum mechanical treatment of scattering in nanoscale transistors. J. Appl. Phys. 93, 5613 (2003) CrossRefGoogle Scholar
  13. 13.
    Kane, E.O.: Tunneling Phenomena in Solids. Plenum, New York (1969), ed. by E. Burstein and S. Lundqvist Google Scholar
  14. 14.
    Schulman, J.N., Chang, Y.C.: Reduced Hamiltonian method for solving the tight-binding model of interfaces. Phys. Rev. B 27, 2346 (1983) CrossRefGoogle Scholar
  15. 15.
    Lent, C., Kirkner, D.: The quantum transmitting boundary method. J. Appl. Phys. 67, 6353 (1990) CrossRefGoogle Scholar
  16. 16.
    Smrčka, L.: R-matrix and the coherent transport in mesoscopic systems. Superlattices Microstruct. 8, 221 (1990) CrossRefGoogle Scholar
  17. 17.
    Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997) Google Scholar
  18. 18.
    Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845 (1997) CrossRefGoogle Scholar
  19. 19.
    Kim, R., Datta, S., Lundstrom, M.S.: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009) CrossRefGoogle Scholar
  20. 20.
    Sabathil, M., Birner, S., Mamaluy, D., Vogl, P.: Efficient computational method for ballistic currents and application to single quantum dots. J. Comput. Electron. 2, 269 (2003) CrossRefGoogle Scholar
  21. 21.
    Sabathil, M., Mamaluy, D., Vogl, P.: Prediction of a realistic quantum logic gate using the contact block reduction method. Semicond. Sci. Technol. 19, S137 (2004) CrossRefGoogle Scholar
  22. 22.
    Khan, H.R., Mamaluy, D., Vasileska, D.: Quantum transport simulation of experimentally fabricated nano-FinFET. IEEE Trans. Electron Devices 54, 784 (2007) CrossRefGoogle Scholar
  23. 23.
    Vasileska, D., Mamaluy, D., Khan, H.R., Raleva, K., Goodnick, S.M.: Semiconductor device modeling. J. Comput. Theor. Nanosci. 5, 1 (2008) CrossRefGoogle Scholar
  24. 24.
    Zibold, T., Vogl, P., Bertoni, A.: Theory of semiconductor quantum-wire-based single- and two-qubit gates. Phys. Rev. B 76, 195301 (2007) CrossRefGoogle Scholar
  25. 25.
    Mamaluy, D., Vasileska, D., Sabathil, M., Zibold, T., Vogl, P.: Contact block reduction method for ballistic transport and carrier densities of open nanostructures. Phys. Rev. B 71, 245321 (2005) CrossRefGoogle Scholar
  26. 26.
    Ryu, H., Klimeck, G.: Contact block reduction method for ballistic quantum transport with semi-empirical sp3d5s* tight binding band models. In: 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT 2008), p. 349 (2008) Google Scholar
  27. 27.
    Birner, S., Zibold, T., Andlauer, T., Kubis, T., Sabathil, M., Trellakis, A., Vogl, P.: nextnano: General Purpose 3-D Simulations. IEEE Trans. Electron Devices 54, 2137 (2007) CrossRefGoogle Scholar
  28. 28.
    Tan, I.-H., Snider, G.L., Chang, L.D., Hu, E.L.: A self-consistent solution of Schrödinger-Poisson equations using a nonuniform mesh. J. Appl. Phys. 68, 4071 (1990) CrossRefGoogle Scholar
  29. 29.
    ARPACK—ARnoldi PACKage, The ARPACK source code is available from Lehoucq, R.B., Sorensen, D.C., Yang, C., ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)
  30. 30.
    LAPACK—Linear Algebra PACKage, The LAPACK source code is available from Optimized libraries containing the LAPACK routines are included in several compiler suites
  31. 31.
    BLAS—Basic Linear Algebra Subprograms, The BLAS source code is available from Optimized libraries containing the BLAS routines are included in several compiler suites
  32. 32.
    Antia, H.M.: Rational function approximations for Fermi-Dirac integrals. Astrophys. J. Suppl. 84, 101 (1993) CrossRefGoogle Scholar
  33. 33.
    Trellakis, A., Galick, A.T., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures. J. Appl. Phys. 81, 7880 (1997) CrossRefGoogle Scholar
  34. 34.
    Laux, S.E., Kumar, A., Fischetti, M.V.: Analysis of quantum ballistic electron transport in ultrasmall silicon devices including space-charge and geometric effects. J. Appl. Phys. 95, 5545 (2004) CrossRefGoogle Scholar
  35. 35.
    Kubis, T., Trellakis, A., Vogl, P.: Self-consistent quantum transport theory of carrier capture in heterostructures. In: Saraniti, M., Ravaioli, U. (eds.) Proceedings of the 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors (HCIS 14, Chicago, USA). Springer Proceedings in Physics, vol. 110, p. 369. Springer, Berlin (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Authors and Affiliations

  • Stefan Birner
    • 1
  • Christoph Schindler
    • 1
  • Peter Greck
    • 1
  • Matthias Sabathil
    • 1
  • Peter Vogl
    • 1
  1. 1.Walter Schottky Institut and Physics DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations