Modeling of modern MOSFETs with strain

  • V. SverdlovEmail author
  • O. Baumgartner
  • T. Windbacher
  • S. Selberherr


We review modeling techniques used to compute strain induced performance enhancement of modern MOSFETs. While p-channel MOSFETs were intensively studied, electron transport in strained structures received surprisingly little attention. A rigorous analysis of the subband structure in thin silicon films under stress is performed. Calculated subband effective masses are shown to strongly depend on shear strain and film thickness. A decrease of the transport effective mass under tensile stress in [110] direction and an additional splitting between the unprimed subbands with the same quantum number guarantees a mobility enhancement even in ultra-thin (001) silicon films. This increase of mobility and drive current combined with the improved channel control makes multi-gate MOSFETs based on thin films or silicon fins preeminent candidates for the 22 nm technology node and beyond.


MOSFETs modeling Shear strain Two-band k⋅p model for conduction band Valley splitting Mobility and current enhancement 


  1. 1.
    Doris, B., Ieong, M., Kanarsky, T., Zhang, Y., Roy, R.A., Documaci, O., Ren, Z., Jamin, F.-F., Shi, L., Natzle, W., Huang, H.-J., Mezzapelle, J., Mocuta, A., Womack, S., Gribelyuk, M., Jones, E.C., Miller, R.J., Wong, H.-S.P., Haensch, W.: Extreme scaling with ultra-thin Si channel MOSFETs. In: IEDM Tech. Dig., pp. 267–270 (2002) Google Scholar
  2. 2.
    Natarajan, S., Armstrong, M., Bost, M., Brain, R., Brazier, M., Chang, C., Chikarmane, V., Childs, M., Deshpande, H., Dev, K., Ding, G., Ghani, T., Golonzka, O., Han, W., He, J., Heussner, R., James, R., Jin, I., Kenyon, C., Klopcic, S., Lee, S., Liu, M., Lodha, S., McFadden, B., Murthy, A., Neiberg, L., Neirynck, J., Packan, P., Pae, S., Parker, C., Pelto, C., Pipes, L., Sebastian, J., Seiple, J., Sell, B., Sivakumar, S., Song, B., Tone, K., Troeger, T., Weber, C., Yang, M., Yeoh, A., Zhang, K.: A 32 nm logic technology featuring 2nd-generation high-k + metal-gate transistors, enhanced channel strain and 0.171 μm2 SRAM cell size in a 291 Mb array. In: IEDM Tech. Dig., pp. 941–943 (2008) Google Scholar
  3. 3.
    Mistry, K., Allen, C., Auth, C., Beattie, B., Bergstrom, D., Bost, M., Brazier, M., Buehler, M., Cappellani, A., Chau, R., Choi, C., Ding, G., Fischer, K., Ghani, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., He, J., Hicks, J., Huessner, R., Ingerly, D., Jain, P., James, R., Jong, L., Joshi, S., Kenyon, C., Kuhn, K., Lee, K., Liu, H., Maiz, J., McIntyre, B., Moon, P., Neirynck, J., Pae, S., Parker, C., Parsons, D., Prasad, C., Pipes, L., Prince, M., Rarade, P., Reynolds, T., Sandford, J., Shifren, L., Sebastian, J., Seiple, J., Simon, D., Sivakumar, S., Smith, P., Thomas, C., Troeger, T., Vandervoorn, P., Williams, S., Zawadzki, K.: A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In: IEDM Tech. Dig., pp. 247–250 (2007) Google Scholar
  4. 4.
    Hudait, M.K., Dewey, G., Datta, S., Fastenau, J.M., Kavalieros, J., Liu, W.K., Lubyshev, D., Pillarisetty, R., Rachmady, W., Radosavljevic, M., Rakshit, T., Chau, R.: Heterogeneous integration of enhancement mode in 0.7 Ga 0.3 As quantum well transistor on silicon substrate using thin (≤2 μm) composite buffer architecture for high-speed and low-voltage (0.5 V) logic applications. In: IEDM Tech. Dig., pp. 625–628 (2007) Google Scholar
  5. 5.
    Chau, R.: Challenges and opportunities of emerging nanotechnology for future VLSI nanoelectronics. In: Rec. International Semiconductor Device Research Symposium (ISDRS), p. 3 (2007) Google Scholar
  6. 6.
    Hall, H.H., Bardeen, J., Pearson, G.L.: The effects of pressure and temperature on the resistance of p–n junctions in germanium. Phys. Rev. 84(1), 129–132 (1951) CrossRefGoogle Scholar
  7. 7.
    Smith, C.S.: Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1), 42–49 (1954) CrossRefGoogle Scholar
  8. 8.
    Fitzgerald, E.A., Xie, Y.H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.J., Weir, B.: Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates. Appl. Phys. Lett. 59(7), 811–813 (1991) CrossRefGoogle Scholar
  9. 9.
    Welser, J., Hoyt, J.L., Gibbons, J.F.: NMOS and PMOS transistors fabricated in strained silicon/relaxed silicon-germanium structures. In: IEDM Tech. Dig., pp. 1000–1002 (1992) Google Scholar
  10. 10.
    Welser, J., Hoyt, J.L., Gibbons, J.F.: Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors. IEEE Electron Device Lett. 15(3), 100–102 (1994) CrossRefGoogle Scholar
  11. 11.
    Ghyselen, B., Hartmann, J.M., Ernst, T., Aulnette, C., Osternaud, B., Bogumilowicz, Y., Abbadie, A., Besson, P., Rayssac, O., Tiberj, A.: Engineering strained silicon on insulator wafers with the smart CutTM technology. Solid-State Electron. 48(8), 1285–1296 (2004) CrossRefGoogle Scholar
  12. 12.
    Sadaka, M., Thean, A.V.Y., Barr, A., Tekleab, D., Kalpat, S., White, T.: Fabrication and operation of sub-50 nm strained-Si on Si1−xGex on insulator (SGOI) CMOSFETs. In: IEEE International SOI Conference, pp. 209–211 (2004) Google Scholar
  13. 13.
    Rim, K., Chan, K., Shi, L., Boyd, D., Ott, J., Klymko, N., Cardone, F., Tai, L., Koester, S., Cobb, M., Canaperi, D., To, B., Duch, E., Babich, I., Carruthers, R., Saunders, P., Walker, G., Zhang, Y., Steen, M., Ieong, M.: Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs. In: IEDM Tech. Dig., pp. 49–52 (2003) Google Scholar
  14. 14.
    Andrieu, F., Ernst, T., Faynot, O., Rozeau, O., Bogumilowicz, Y., Hartmann, J.M., Brevard, L., Toffoli, A., Lafond, D., Ghyselen, B.: Performance and physics of sub-50 nm strained Si on Si1−xGex on insulator (SGOI) nMOSFETs. Solid-State Electron. 50(4), 566–572 (2006) CrossRefGoogle Scholar
  15. 15.
    Wang, E.X., Matagne, P., Shifren, L., Obradovic, B., Kotlyar, R., Cea, S., Stettler, M., Giles, M.D.: Physics of hole transport in strained silicon MOSFET inversion layers. IEEE Trans. Electron Devices 53(8), 1840–1851 (2006) CrossRefGoogle Scholar
  16. 16.
    Sun, G., Sun, Y., Nishida, T., Thompson, S.E.: Hole mobility in silicon inversion layers: stress and surface orientation. J. Appl. Phys. 102(8), 084501 (2007) CrossRefGoogle Scholar
  17. 17.
    Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in Si, Ge, and SiGe alloys. J. Appl. Phys. 80(4), 2234–2252 (1996) CrossRefGoogle Scholar
  18. 18.
    Scott, G., Lutze, J., Rubin, M., Nouri, F., Manley, M.: NMOS drive current reduction caused by transistor layout and trench isolation induced stress. In: IEDM Tech. Dig., pp. 827–830 (1999) Google Scholar
  19. 19.
    Matsumoto, T., Maeda, S., Dang, H., Uchida, T., Ota, K., Hirano, Y., Sayama, H., Iwamatsu, T., Ipposhi, T., Oda, H., Maegawa, S., Inoue, Y., Nishmura, T.: Novel SOI wafer engineering using low stress and high mobility CMOSFET with 〈100〉 channel for embedded RF/analog applications. In: IEDM Tech. Dig., pp. 663–666 (2002) Google Scholar
  20. 20.
    Steegen, A., Stucchi, M., Lauwers, A., Maex, K.: Silicide induced pattern density and orientation dependent transconductance in MOS transistors. In: IEDM Tech. Dig., pp. 497–500 (1999) Google Scholar
  21. 21.
    Ito, S., Namba, H., Yamaguchi, K., Hirata, T., Ando, K., Koyama, S., Kuroki, S., Ikezawa, N., Suzuki, T., Saitoh, T., Horiuchi, T.: Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design. In: IEDM Tech. Dig., pp. 247–251 (2002) Google Scholar
  22. 22.
    Shimizu, A., Hachimine, K., Ohki, N., Ohta, H., Koguchi, M., Nonaka, Y., Sato, H., Ootsuka, F.: Local mechanical-stress control (LMC): a new technique for CMOS-performance enhancement. In: IEDM Tech. Dig., pp. 433–436 (2001) Google Scholar
  23. 23.
    Ouyang, Q., Yang, M., Holt, J., Panda, S., Chen, H., Utomo, H., Fischetti, M., Rovedo, N., Jinghong, L., Klymko, N., Wildman, H., Kanarsky, T., Costrini, G., Fried, D.M., Bryant, A., Ott, J.A., Ieong, M., Sung, C.-Y.: Investigation of CMOS devices with embedded SiGe source/drain on hybrid orientation substrates. In: Int. Symp. on VLSI Technology, pp. 28–29 (2005) Google Scholar
  24. 24.
    Bai, P., Auth, C., Balakrishnan, S., Bost, M., Brain, R., Chikarmane, V., Heussner, R., Hussein, M., Hwang, J., Ingerly, D., James, R., Jeong, J., Kenyon, C., Lee, E., Lee, S.H., Lindert, N., Liu, M., Ma, Z., Marieb, T., Murthy, A., Nagisetty, R., Natarajan, S., Neirynck, J., Ott, A., Parker, C., Sebastian, J., Shaheed, R., Sivakumar, S., Steigerwald, J., Tyagi, S., Weber, C., Woolery, B., Yeoh, A., Zhang, K., Bohr, M.: A 65 nm logic technology featuring 35 nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 μm2 SRAM cell. In: IEDM Tech. Dig., pp. 657–660 (2004) Google Scholar
  25. 25.
    Ang, K.-W., Chui, K.J., Bliznetsov, V., Du, A., Balasubramanian, N., Li, M.F., Samudra, G., Yeo, Y.C.: Enhanced performance in 50 nm n-MOSFETs with silicon-carbon source/drain regions. In: IEDM Tech. Dig., pp. 1069–1071 (2004) Google Scholar
  26. 26.
    Ang, K.-W., Chui, K.J., Bliznetsov, V., Tung, C.H., Du, A., Balasubramanian, N., Samudra, G., Li, M.F., Yeo, Y.C.: Lattice strain analysis of transistor structures with silicon–germanium and silicon–carbon source/drain stressors. Appl. Phys. Lett. 86(3), 093102 (2005) CrossRefGoogle Scholar
  27. 27.
    Pidin, S., Mori, T., Inoue, K., Fukuta, S., Itoh, N., Mutoh, E., Ohkoshi, K., Nakamura, R., Kobayashi, K., Kawamura, K., Saiki, T., Fukuyama, S., Satoh, S., Kase, M., Hashimoto, K.: A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films. In: IEDM Tech. Dig., pp. 213–216 (2004) Google Scholar
  28. 28.
    Sheraw, C.D., Yang, M., Fried, D.M., Costrini, G., Kanarsky, T., Lee, W.H., Chan, V., Fischetti, M.V., Holt, J., Black, L., Naeem, M., Panda, S., Economikos, L., Groschopf, J., Kapur, A., Li, Y., Mo, R.T., Bonnoit, A., Degraw, D., Luning, S., Chidambarrao, D., Wang, X., Bryant, A., Brown, D., Sung, C.Y., Agnello, P., Ieong, M., Huang, S.F., Chen, X., Khare, M.: Dual stress liner enhancement in hybrid orientation technology. In: Int. Symp. on VLSI Technology, pp. 12–13 (2005) Google Scholar
  29. 29.
    Arghavani, R., Xia, L., Saad, H.M., Balseanu, M., Karunasiri, G., Mascarenhas, A., Thompson, S.E.: A reliable and manufacturable method to induce a stress of >1 GPa on a p-channel MOSFET in high volume manufacturing. IEEE Electron Device Lett. 27(2), 114–116 (2006) CrossRefGoogle Scholar
  30. 30.
    Jan, C.H., Bai, P., Choi, J., Curello, G., Jacobs, S., Jeong, J., Johnson, K., Jones, D., Klopcic, S., Lin, J., Lindert, N., Lio, A., Natarajan, S., Neirynck, J., Packan, P., Park, J., Post, I., Patel, M., Ramey, S., Reese, P., Rockford, L., Roskowski, A., Sacks, G., Turkot, B., Wang, Y., Wei, L., Yip, J., Young, I., Zhang, K., Zhang, Y., Bohr, M., Holt, B.: A 65 nm ultra low power logic platform technology using uni-axial strained silicon transistors. In: IEDM Tech. Dig., pp. 60–63 (2005) Google Scholar
  31. 31.
    Horstmann, M., Wei, A., Kammler, T., Höntschel, J., Bierstedt, H., Feudel, T., Frohberg, K., Gerhardt, M., Hellmich, A., Hempel, K., Hohage, J., Javorka, P., Klais, J., Koerner, G., Lenski, M., Neu, A., Otterbach, R., Press, P., Reichel, C., Trentsch, M., Trui, B., Salz, H., Schaller, M., Engelmann, H.J., Herzog, O., Ruelke, H., Hübler, P., Stephan, R., Greenlaw, D., Raab, M., Kepler, N.: Integration and optimization of embedded-SiGe, compressive and tensile stressed liner films, and stress memorization in advanced SOI CMOS technologies. In: IEDM Tech. Dig., pp. 233–236 (2005) Google Scholar
  32. 32.
    Luttinger, J.M., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97(4), 869–883 (1955) zbMATHCrossRefGoogle Scholar
  33. 33.
    Bir, G.L., Pikus, G.E.: Symmetry and Strain-Induced Effects in Semiconductors. Wiley, New York (1974) Google Scholar
  34. 34.
    Sun, Y., Thompson, S.E., Nishida, T.: Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 101, 104503 (2007) CrossRefGoogle Scholar
  35. 35.
    Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band k⋅p calculation of the hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94(2), 1079–1095 (2003) CrossRefGoogle Scholar
  36. 36.
    Sato, T., Takeishi, Y., Hara, H.: Effects of crystallographic orientation on mobility, surface state density, and noise in p-type inversion layers on oxidized silicon surfaces. Jpn. J. Appl. Phys. 8, 588 (1969) CrossRefGoogle Scholar
  37. 37.
    Pham, A.T., Jungemann, C., Meinerzhagen, B.: Deterministic multisubband device simulations for strained double gate PMOSFETs including magnetotransport. In: IEDM Tech. Dig., pp. 895–898 (2008) Google Scholar
  38. 38.
    Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54(2), 437–672 (1982) CrossRefGoogle Scholar
  39. 39.
    Rieger, M., Vogl, P.: Electronic-band parameters in strained Si1−xGex alloys on Si1−yGey substrates. Phys. Rev. B 48(19), 14276–14287 (1993) CrossRefGoogle Scholar
  40. 40.
    Fischetti, M.V., Gámiz, F., Hänsch, W.: On the enhanced electron mobility in strained-silicon inversion layers. J. Appl. Phys. 92(12), 7320–7324 (2002) CrossRefGoogle Scholar
  41. 41.
    Takagi, S.I., Hoyt, J.L., Welser, J.J., Gibbons, J.F.: Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 80(3), 1567–1577 (1996) CrossRefGoogle Scholar
  42. 42.
    Uchida, K., Krishnamohan, T., Saraswat, K.C., Nish, Y.: Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime. In: IEDM Tech. Dig., pp. 129–132 (2005) Google Scholar
  43. 43.
    Uchida, K., Kinoshita, A., Saitoh, M.: Carrier transport in (110) nMOSFETs: subband structure, non-parabolicity, mobility characteristics, and uniaxial stress engineering. In: IEDM Tech. Dig., pp. 1019–1021 (2006) Google Scholar
  44. 44.
    Esseni, D., Palestri, P.: Linear combination of bulk bands method for investigating the low-dimensional electron gas in nanostructured devices. Phys. Rev. B 72(16), 165342 (2005) CrossRefGoogle Scholar
  45. 45.
    Sverdlov, V., Esseni, D., Baumgartner, O., Kosina, H., Selberherr, S., Schanovsky, F., Esseni, D.: The linear combination of bulk bands-method for electron and hole subband calculations in strained silicon films and surface layers. In: Proc. IWCE, pp. 49–53 (2009) Google Scholar
  46. 46.
    Rideau, D., Feraille, M., Ciampolini, L., Minondo, M., Tavernier, C., Jaouen, H., Ghetti, A.: Strained Si, Ge, and Si1−xGex alloys modeled with a first-principles-optimized full-zone k⋅p method. Phys. Rev. B 74(19), 195208 (2006) CrossRefGoogle Scholar
  47. 47.
    Hensel, J.C., Hasegawa, H., Nakayama, M.: Cyclotron resonance in uniaxially stressed silicon. II. Nature of the covalent bond. Phys. Rev. 138(1A), A225–A238 (1965) CrossRefGoogle Scholar
  48. 48.
    Ungersboeck, E., Dhar, S., Karlowatz, G., Sverdlov, V., Kosina, H., Selberherr, S.: The effect of general strain on band structure and electron mobility of silicon. IEEE Trans. Electron Devices 54(9), 2183–2190 (2007) CrossRefGoogle Scholar
  49. 49.
    Sverdlov, V., Ungersboeck, E., Kosina, H., Selberherr, S.: Effects of shear strain on the conduction band in silicon: an efficient two-band k⋅p theory. In: European Solid-State Device Research Conference (ESSDERC), pp. 386–389 (2007) Google Scholar
  50. 50.
    Sverdlov, V., Karlowatz, G., Dhar, S., Kosina, H., Selberherr, S.: Two-band k⋅p model for the conduction band in silicon: impact of strain and confinement on band structure and mobility. Solid State Electron. 52, 1563–1568 (2008) CrossRefGoogle Scholar
  51. 51.
    VASP (Vienna Ab-initio Simulation Program), Kresse, G., Hafner, J.: Phys. Rev. B 47, 558 (1993) CrossRefGoogle Scholar
  52. 52.
    VASP (Vienna Ab-initio Simulation Program), Kresse, G., Hafner, J.: Phys. Rev. B 49, 14251 (1994) CrossRefGoogle Scholar
  53. 53.
    VASP (Vienna Ab-initio Simulation Program), Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 11169 (1996) CrossRefGoogle Scholar
  54. 54.
    VASP (Vienna Ab-initio Simulation Program), Kresse, G., Furthmüller, J.: Comput. Math. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  55. 55.
    Boykin, T.B., Klimeck, G., Oyafuso, F.: Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 69(11), 115201 (2004) CrossRefGoogle Scholar
  56. 56.
    Niquet, Y.M., Lherbier, A., Persson, M.P., Triozon, F., Roche, S., Blasé, X., Rideau, D.: Atomistic tight-binding approaches to quantum transport. In: Proc. 13th International Workshop on Computational Electronics, pp. 293–296 (2009) Google Scholar
  57. 57.
    Niquet, Y.M., Rideau, D., Tavernier, C., Jaouen, H., Blase, X.: Model for the on-site matrix elements of the tight-binding Hamiltonian of a strained crystal: application to silicon, germanium and their alloys. Phys. Rev. B 79, 245201-1–13 (2009) CrossRefGoogle Scholar
  58. 58.
    Baumgartner, O., Karner, M., Sverdlov, V., Kosina, H.: Numerical quadrature of the subband distribution functions in strained silicon UTB devices. In: Proc. 13th International Workshop on Computational Electronics, pp. 53–56 (2009) Google Scholar
  59. 59.
    Sverdlov, V., Selberherr, S.: Electron subband structure and controlled valley splitting in silicon thin-body SOI FETs: two-band k⋅p theory and beyond. Solid State Electron. 52(12), 1861–1866 (2008) CrossRefGoogle Scholar
  60. 60.
    Kirchoefer, S.W., Holonyak, N.Jr., Hess, K., Meehan, K., Gulino, D.A., Drickamer, H.G., Coleman, J.J., Dapkus, P.D.: High pressure measurements on AlxGa1−xAs-GaAs (x=0.5 and 1) superlattices and quantum well heterostructure lasers. J. Appl. Phys. 53, 6037–6042 (1982) CrossRefGoogle Scholar
  61. 61.
    Goswami, S., Slinker, K.A., Friesen, M., McGuire, L.M., Truitt, J.L., Tahan, C., Klein, L.J., Chu, J.O., Mooney, P.M., van der Weide, D.W., Joynt, R., Coppersmith, S.N., Eriksson, M.A.: Controllable valley splitting in silicon quantum devices. Nat. Phys. 3, 41–45 (2007) CrossRefGoogle Scholar
  62. 62.
    van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D., Foxon, C.T.: Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60(9), 848–850 (1988) CrossRefGoogle Scholar
  63. 63.
    Friessen, M., Chutia, S., Tahan, C., Coppersmith, S.N.: Valley splitting theory of SiGe/Si/SiGe quantum wells. Phys. Rev. B 75(11), 115318–1–12 (2007) CrossRefGoogle Scholar
  64. 64.
    Rideau, D., Feraille, M., Michaillat, M., Niquet, Y.M., Tavernier, C., Jaouen, H.: On the validity of the effective mass approximation and the Luttinger k⋅p model in fully depleted SOI MOSFETs. Solid State Electron. 53(4), 452–461 (2009) CrossRefGoogle Scholar
  65. 65.
    Martinez, A., Kalna, K., Sushko, P.V., Shluger, A.L., Barker, J.R., Asenov, A.: Impact of body-thickness-dependent band structure on scaling of double-gate MOSFETs: a DFT/NEGF study. IEEE Trans. Nanotechnol. 8(2), 159–166 (2009) CrossRefGoogle Scholar
  66. 66.
    van der Steen, J.-L.P.J., Esseni, D., Palestri, P., Selmi, L., Hueting, R.J.E.: Validity of the parabolic effective mass approximation in silicon and germanium n-MOSFETs with different crystal orientations. IEEE Trans. Electron Devices 54(8), 1843–1851 (2007) CrossRefGoogle Scholar
  67. 67.
    Sverdlov, V., Ungersboeck, E., Kosina, H., Selberherr, S.: Volume inversion mobility in SOI MOSFETs for different thin body orientations. Solid State Electron. 51(2), 299–305 (2007) CrossRefGoogle Scholar
  68. 68.
    Takagi, S.-I., Toriumi, A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in Si MOSFETs: part I—effects of substrate impurity concentration. IEEE Trans. Electron Devices 41(12), 2357–2362 (1994) CrossRefGoogle Scholar
  69. 69.
    Natori, K.: Ballistic metal-oxide-semiconductor field-effect transistor. J. Appl. Phys. 78(8), 4879–4890 (1994) CrossRefGoogle Scholar
  70. 70.
    Likharev, K.: Electronics below 10 nm. In: Nano and Giga Challenges in Electronics, pp. 27–68. Elsevier, Amsterdam (2003) CrossRefGoogle Scholar
  71. 71.
    Lundstrom, M., Ren, Z.: Essential Physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49(1), 133–141 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Authors and Affiliations

  • V. Sverdlov
    • 1
    Email author
  • O. Baumgartner
    • 1
  • T. Windbacher
    • 1
  • S. Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations