Advertisement

Journal of Computational Electronics

, Volume 9, Issue 1, pp 8–15 | Cite as

Real-time modeling of quantum cascade laser operation using linear combinations of intrawell properties

  • A. T. Cooney
  • A. M. Sarangan
Article
  • 67 Downloads

Abstract

Description of multi-quantum well heterostructures based on localized properties of the constituent single well eigenstates permits invaluable insight into the relationships between structure design and device operation. Analytical descriptions of single well electronic states permits analytical evaluation of tight-binding parameters used to describe coupled well interactions. An expansion of Fermi’s Golden Rule in the single well basis is presented under the assumption that transitions between delocalized states can be written as linear combinations of intrawell mean scattering rates. This assumption of localized transitions permits the construction of predetermined sets for the limited single well scattering events. Using a simplified density matrix description of transport, where incoherent scattering and coherent tunneling is restricted to intrawell and interwell transitions, respectively, allows for an easily accessible model of transport. The combination of these computational techniques produces a simulation tool requiring near zero computational time. Application of these techniques to a four-well and a three-well resonant phonon depopulation quantum cascade laser demonstrates this method as a valuable tool for fast approximation of device operation.

Keywords

Quantum cascade laser Laser Heterostructure Tight binding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Donovan, K., Harrison, P., Kelsall, R.W.: J. Appl. Phys. 89, 6 (2001) CrossRefGoogle Scholar
  2. 2.
    Indjin, D., Harrison, P., Kelsall, R.W., Ikonic, Z.: Photonics Technol. Lett. 15, 1 (2003) CrossRefGoogle Scholar
  3. 3.
    Harrison, P., Indjin, D., Jovanovic, V.D., Mircetic, A., Ikonic, Z., Kelsall, R.W., McTavish, J., Savic, I., Vukmirovic, N., Milanovic, V.: Acta Phys. Pol. 107, 1 (2005) Google Scholar
  4. 4.
    Indjin, D., Ikonic, Z., Jovanovic, V.D., Vukmirovic, N., Harrison, P., Kelsall, R.W.: Semicond. Sci. Technol. 20, S237 (2005) CrossRefGoogle Scholar
  5. 5.
    Callebaut, H., Kumar, S., Williams, B.S., Hu, Q., Reno, J.L.: Appl. Phys. Lett. 83, 2 (2003) CrossRefGoogle Scholar
  6. 6.
    Callebaut, H., Kumar, S., Williams, B.S., Hu, Q., Reno, J.L.: Appl. Phys. Lett. 84, 5 (2004) CrossRefGoogle Scholar
  7. 7.
    Lu, J.T., Cao, J.C.: Appl. Phys. Lett. 88, 061119 (2006) CrossRefGoogle Scholar
  8. 8.
    Li, H.L., Cao, J.C., Lu, J.T., Han, Y.J.: Appl. Phys. Lett. 92, 221105 (2008) CrossRefGoogle Scholar
  9. 9.
    Li, H.L., Cao, J.C., Lu, J.T.: J. Appl. Phys. 103, 103113 (2008) CrossRefGoogle Scholar
  10. 10.
    Li, H., Cao, J.C., Han, Y.J., Guo, X.G., Tan, Z.Y., Lu, J.T., Luo, H., Laramboise, S.R., Liu, H.C.: J. Appl. Phys. 104, 043101 (2008) CrossRefGoogle Scholar
  11. 11.
    Li, H., Cao, J.C., Tan, Z.Y., Feng, S.L.: Appl. Phys. Lett. 104, 103101 (2008) Google Scholar
  12. 12.
    Cao, J.C., Lu, J.T., Li, H.: Physica E 41, 282 (2008) CrossRefGoogle Scholar
  13. 13.
    Li, H., Cao, J.C., Liu, H.C.: Semicond. Sci. Technol. 23, 125040 (2008) CrossRefGoogle Scholar
  14. 14.
    Wacker, A., Lee, S.C.: Phys. B, Condens. Matter 314, 1 (2002) CrossRefGoogle Scholar
  15. 15.
    Lee, S.C., Wacker, A.: Phys. Rev. B. 66, 245314 (2002) CrossRefGoogle Scholar
  16. 16.
    Pereira, M.F. Jr., Lee, S.C., Wacker, A.: Phys. Rev. B 69, 205310 (2004) CrossRefGoogle Scholar
  17. 17.
    Banit, F., Lee, S.C., Knorr, A., Wacker, A.: Appl. Phys. Lett. 86, 041108 (2005) CrossRefGoogle Scholar
  18. 18.
    Lee, S.C., Banit, F., Woerner, M., Wacker, A.: Phys. Rev. B 73, 245320 (2006) CrossRefGoogle Scholar
  19. 19.
    Wacker, A.: Phys. Stat. Sol. C. 5, 1 (2007) Google Scholar
  20. 20.
    Nelander, R., Wacker, A.: Appl. Phys. Lett. 92, 081102 (2008) CrossRefGoogle Scholar
  21. 21.
    Callebaut, H., Hu, Q.: J. Appl. Phys. 98, 104505 (2005) CrossRefGoogle Scholar
  22. 22.
    Terazzi, R., Gresch, T., Wittmann, A., Faist, J.: Phys. Rev. B 78, 155328 (2008) CrossRefGoogle Scholar
  23. 23.
    Slater, J.C., Koster, G.F.: Phys. Rev. 94, 1498 (1954) zbMATHCrossRefGoogle Scholar
  24. 24.
    Roothaan, C.C.J.: Rev. Mod. Phys. 23, 69 (1951) zbMATHCrossRefGoogle Scholar
  25. 25.
    Foryen, S., Harrison, W.A.: Phys. Rev. B 20, 2420 (1979) CrossRefGoogle Scholar
  26. 26.
    Evarestov, R.A.: Quantum Chemistry of Solids: The LCAO First Principle Treatments of Crystal. Springer, Berlin (2007) Google Scholar
  27. 27.
    Harrison, W.A.: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond. Dover, New York (1989) Google Scholar
  28. 28.
    Harrison, P.: Quantum Wells, Wires, and Dots. Wiley, Chichester (2005) CrossRefGoogle Scholar
  29. 29.
    Chandra, A.K.: Introduction to Quantum Chemistry. McGraw–Hill, New York (1994) Google Scholar
  30. 30.
    Williams, B.S., Kumar, S., Hu, Q., Reno, J.L.: Opt. Express 13, 9 (2005) CrossRefGoogle Scholar
  31. 31.
    Luo, H., Laframboise, S.R., Wasilewski, Z.R., Aers, G.C., Liu, H.C., Cao, J.C.: Appl. Phys. Lett. 90, 041112 (2007) CrossRefGoogle Scholar
  32. 32.
    Belkin, M.A., Fan, J.A., Hormoz, S., Capasso, F., Khanna, S.P., Lachab, M., Davies, A.G., Linfield, E.H.: Opt. Express 16, 3242 (2008) CrossRefGoogle Scholar
  33. 33.
    Harrison, P., Indjin, D., Kelsall, R.W.: J. Appl. Phys. 92, 11 (2002) Google Scholar

Copyright information

© Springer Science+Business Media LLC 2010

Authors and Affiliations

  1. 1.Electro-Optics DepartmentUniversity of DaytonDaytonUSA

Personalised recommendations