Computational study of carbon-based electronics

Article

Abstract

Graphite-related materials such as carbon nanotubes and graphene nanoribbons have been extensively studied in recent years due to their exceptional electronic, opto-electronic, and mechanical properties. To explore the physics of carbon-based devices and to find methods to improve their functionality and performance, we present a comprehensive numerical study employing the non-equilibrium Green’s function formalism, in conjunction with a tight-binding model for the band-structure. The electronic and optoelectronic properties of carbon-based devices is studied. The effect of electron-phonon interactions on the static and dynamic response of such field-effect transistors is discussed and simulation results are compared with experimental data. The results indicate that the inclusion of scattering mechanisms is essential to understand the behavior of such devices. Due to the direct and relatively narrow bandgap of carbon-based devices, they have been considered as a candidate for future infra-red photo-detectors. In this work, we analyze the efficiency of such devices.

Keywords

Carbon nanotubes Graphene nanoribbons Quantum transport Non-equilibrium Green’s function Electron-phonon interaction Electron-photon Interaction Field-effect transistors Photo-detector Technology computer-aided design 

References

  1. 1.
    International Technology Roadmap for Semiconductors—2007 Edition. Tech. Rep. Semiconductor Industry Association Google Scholar
  2. 2.
    Katsnelson, M., et al.: Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2(9), 620 (2006) CrossRefGoogle Scholar
  3. 3.
    Geim, A., Novoselov, K.: The rise of graphene. Nature Mater. 6(3), 183 (2007) CrossRefGoogle Scholar
  4. 4.
    Du, X., et al.: Approaching ballistic transport in suspended graphene. Nature Nanotechnol. 3(8), 491 (2008) CrossRefGoogle Scholar
  5. 5.
    Bolotina, K., et al.: Ultrahigh electron mobility in suspended graphene. Solid-State Commun. 146(9–10), 351 (2008) CrossRefGoogle Scholar
  6. 6.
    Chen, J.-H., et al.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnol. 3(4), 206 (2008) CrossRefGoogle Scholar
  7. 7.
    Morozov, S., et al.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008) (4pp) CrossRefGoogle Scholar
  8. 8.
    Tombros, N., et al.: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature (London) 448(7153), 571 (2008) CrossRefGoogle Scholar
  9. 9.
    Cho, S., et al.: Gate-tunable graphene spin valve. Appl. Phys. Lett. 91(12), 123105 (2007) (3pp) CrossRefGoogle Scholar
  10. 10.
    Saito, R., et al.: Raman intensity of single-wall carbon nanotubes. Phys. Rev. B 57(7), 4145 (1998) CrossRefGoogle Scholar
  11. 11.
    Javey, A., et al.: Ballistic carbon nanotube field-effect transistors. Nature (London) 424(6949), 654 (2003) CrossRefGoogle Scholar
  12. 12.
    Chen, J., et al.: Self-aligned carbon nanotube transistors with novel chemical doping. In: Intl. Electron Device Meet. Tech. Dig., pp. 695–698 (2004) Google Scholar
  13. 13.
    Avouris, P., et al.: Carbon based electronics. Nature Nanotechnol. 2(10), 605 (2007) CrossRefGoogle Scholar
  14. 14.
    Berger, C., et al.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191 (2006) CrossRefGoogle Scholar
  15. 15.
    Freitag, M.: Graphene: nanoelectronics goes flat out. Nature Nanotechnol. 3(8), 455 (2008) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Fujita, M., et al.: Pecular localized states at zigzag graphite edge. J. Phys. Soc. Jpn. 65(7), 1920 (1996) CrossRefGoogle Scholar
  17. 17.
    Barone, V., et al.: Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6(12), 2748 (2006) CrossRefGoogle Scholar
  18. 18.
    Han, M., et al.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007) (4pp) CrossRefGoogle Scholar
  19. 19.
    Son, Y.-W., et al.: Half-metallic graphene nanoribbons. Nature (London) 444(7117), 347 (2006) CrossRefGoogle Scholar
  20. 20.
    Chen, Z., et al.: Graphene nano-ribbon electronics. arXiv:cond-mat/0701599 (2007)
  21. 21.
    Tapaszto, L., et al.: Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotechnol. 3(7), 397 (2008) CrossRefGoogle Scholar
  22. 22.
    Karner, M., et al.: VSP—a multi-purpose Schrödinger-Poisson solver for TCAD applications. J. Comput. Electron. 6(1–3), 179 (2007) CrossRefGoogle Scholar
  23. 23.
    Datta, S.: Quantum Transport: From Atoms to Transistors. Cambridge University Press, Cambridge (2005) MATHGoogle Scholar
  24. 24.
    Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Non-Equilibrium Problems. Benjamin, New York (1962) Google Scholar
  25. 25.
    Mahan, G.D.: Many-Particle Physics, Physics of Solids and Liquids, 2nd edn. Plenum, New York (1990) Google Scholar
  26. 26.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, New York (1995) Google Scholar
  27. 27.
    Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, San Francisco (1971) Google Scholar
  28. 28.
    Lake, R., et al.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845 (1997) CrossRefGoogle Scholar
  29. 29.
    Lake, R.K., Datta, S.: High-bias quantum electron transport. Superlattices Microstruct. 11(1), 83 (1992) CrossRefGoogle Scholar
  30. 30.
    Guo, J., et al.: Multi-scale modeling of carbon nanotube transistors. Intl. J. Multiscale Comput. Eng. 2(2), 257 (2004) CrossRefGoogle Scholar
  31. 31.
    Zhao, P., Guo, J.: Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods. Appl. Phys. Lett. 105(11), 034503 (2009) (3pp) MathSciNetGoogle Scholar
  32. 32.
    Venugopal, R., et al.: Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J. Appl. Phys. 92(7), 3730 (2002) CrossRefGoogle Scholar
  33. 33.
    Svizhenko, A., et al.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91(4), 2343 (2002) CrossRefGoogle Scholar
  34. 34.
    Sancho, M.P.L., et al.: Highly convergent schemes for the calculation of bulk and surface green functions. J. Phys. F: Met. Phys. 15(4), 851 (1985) Google Scholar
  35. 35.
    Heinze, S., et al.: Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002) CrossRefGoogle Scholar
  36. 36.
    Nemec, N., et al.: Contact dependence of carrier injection in carbon nanotubes: an ab initio study. Phys. Rev. Lett. 96, 076802 (2006) CrossRefGoogle Scholar
  37. 37.
    Palacios, J., et al.: An ab initio approach to electrical transport in molecular devices. Nanotechnology 13(3), 378 (2002) CrossRefGoogle Scholar
  38. 38.
    Kienle, D., Ghosh, A.W.: Atomistic modeling of metal-nanotube contacts. J. Comput. Electron. 4(1–2), 97 (2005) CrossRefGoogle Scholar
  39. 39.
    Svizhenko, A., Anantram, M.: Effect of scattering and contacts on current and electrostatics in carbon nanotubes. Phys. Rev. B 72, 085430 (2005) CrossRefGoogle Scholar
  40. 40.
    Popov, V.N., Lambin, P.: Intraband electron-phonon scattering in single-walled carbon nanotubes. Phys. Rev. B 74, 075415 (2006) CrossRefGoogle Scholar
  41. 41.
    Migdal, A.B.: Interaction between electrons and lattice vibrations in a normal metal. Soviet Phys. JETP 7(6), 996 (1958) MathSciNetGoogle Scholar
  42. 42.
    Haug, H. (ed.): Optical Nonlinearities and Instabilities in Semiconductors. Academic Press, Boston (1988) Google Scholar
  43. 43.
    Koswatta, S.O., et al.: Non-equilibrium Green’s function treatment of phonon scattering in carbon nanotube transistors. IEEE Trans. Electron Devices 54(9), 2339 (2007) CrossRefGoogle Scholar
  44. 44.
    Henrickson, L.E.: Nonequilibrium photocurrent modeling in resonant tunneling photodetectors. J. Appl. Phys. 91(10), 6273 (2002) CrossRefGoogle Scholar
  45. 45.
    Stewart, D.A., Leonard, F.: Photocurrents in nanotube junctions. Phys. Rev. Lett. 93(10), 107401 (2004) CrossRefGoogle Scholar
  46. 46.
    Avouris, P., et al.: Carbon-nanotube photonics and optoelectronics. Nature Photonics 2(6), 341 (2008) CrossRefGoogle Scholar
  47. 47.
    Dresselhaus, M., et al.: Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 58, 719 (2007) CrossRefGoogle Scholar
  48. 48.
    Spataru, C.D., et al.: Quasiparticle and excitonic effects in the optical response of nanotubes and nanoribbons. In: Carbon Nanotubes, pp. 195–227. Springer, Berlin (2008) CrossRefGoogle Scholar
  49. 49.
    Guo, J., et al.: Theoretical investigation on photoconductivity of single intrinsic carbon nanotubes. Appl. Phys. Lett. 88, 133111 (2006) CrossRefGoogle Scholar
  50. 50.
    Aeberhard, U., Morf, H.: Microscopic momequilibrium theory of quantum well solar cells. Phys. Rev. B 77, 125343 (2008) (9pp) CrossRefGoogle Scholar
  51. 51.
    Pourfath, M., Kosina, H.: Fast convergent Schrödinger-Poisson solver for the static and dynamic analysis of carbon nanotube field effect transistors. In: Large Scale Scientific Computing. Lecture Notes in Computer Science, vol. 3743, pp. 578–585. Springer, Berlin (2006) CrossRefGoogle Scholar
  52. 52.
    Koswatta, S.O., et al.: Ballisticity of nanotube FETs: role of phonon energy and gate bias. Appl. Phys. Lett. 89, 023125 (2006) CrossRefGoogle Scholar
  53. 53.
    Yoon, Y., et al.: Effect of phonon scattering on intrinsic delay and cutoff frequency of carbon nanotube FETs. IEEE Trans. Electron Devices 53(10), 2467 (2006) CrossRefGoogle Scholar
  54. 54.
    Chen, Y., et al.: Time-dependent quantum transport and nonquasistatic effects in carbon nanotube transistors. Appl. Phys. Lett. 89, 203122 (2006) CrossRefGoogle Scholar
  55. 55.
    Saito, R., et al.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998) Google Scholar
  56. 56.
    Park, J., et al.: Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4(3), 517 (2004) CrossRefGoogle Scholar
  57. 57.
    Javey, A., et al.: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4(7), 1319 (2004) CrossRefGoogle Scholar
  58. 58.
    Singh, D., et al.: Frequency response of top-gated carbon nanotube field-effect transistors. IEEE Trans. Nanotechnol. 3(3), 383 (2004) CrossRefGoogle Scholar
  59. 59.
    Frank, D., Appenzeller, J.: High-frequency response in carbon nanotube field-effect transistors. IEEE Electron Device Lett. 25(1), 34 (2004) CrossRefGoogle Scholar
  60. 60.
    Huo, X., et al.: High frequency S parameters characterization of back-gate carbon nanotube field-effect transistors. In: Intl. Electron Device Meet. Tech. Dig., pp. 691–694 (2004) Google Scholar
  61. 61.
    Louarn, A.L., et al.: Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 90, 233108 (2007) CrossRefGoogle Scholar
  62. 62.
    Datta, S.: A simple kinetic equation for steady-state quantum transport. J. Phys.: Condens. Matter 2(40), 8023 (1990) CrossRefGoogle Scholar
  63. 63.
    Lake, R., Datta, S.: Nonequilibrium Green’s-function method applied to double-barrier resonant-tunneling diodes. Phys. Rev. B 45(12), 6670 (1992) CrossRefGoogle Scholar
  64. 64.
    Freitag, M., et al.: Photoconductivity of single carbon nanotubes. Nano Lett. 3(8), 1067 (2003) CrossRefGoogle Scholar
  65. 65.
    Hsu, H., Reichl, L.E.: Selection rule for the optical absorption of graphene nanoribbons. Phys. Rev. B 76(4), 045418 (2007) (5pp) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Authors and Affiliations

  1. 1.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations