An investigation of performance limits of conventional and tunneling graphene-based transistors

  • R. Grassi
  • A. Gnudi
  • E. Gnani
  • S. Reggiani
  • G. Baccarani


In this paper we perform a simulation study on the limits of graphene-nanoribbon field-effect transistors (GNR-FETs) for post-CMOS digital applications. Both conventional and tunneling FET architectures are considered. Simulations of conventional narrow GNR-FETs confirm the high potential of these devices, but highlight at the same time OFF-state leakage problems due to various tunneling mechanisms, which become more severe as the width is made larger and require a careful device optimization. Such OFF-state problems are partially solved by the tunneling FETs, which allow subthreshold slopes better than 60 mV/dec, at the price of a reduced ON-current. The importance of a very good control on edge roughness is highlighted by means of a direct simulation of devices with non-ideal edges.


Graphene nanoribbons Carbon electronics Nanoelectronic devices Tunneling FET 


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004) CrossRefGoogle Scholar
  2. 2.
    Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006) CrossRefGoogle Scholar
  3. 3.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007) CrossRefGoogle Scholar
  4. 4.
    Lemme, M.C., Echtermeyer, T.J., Baus, M., Kurz, H.: A graphene field-effect device. IEEE Electron Device Lett. 28, 282 (2007) CrossRefGoogle Scholar
  5. 5.
    Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Dai, H.: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008) CrossRefGoogle Scholar
  6. 6.
    Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007) CrossRefGoogle Scholar
  7. 7.
    Liang, G., Neophytou, N., Nikonov, D.E., Lundstrom, M.S.: Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans. Electron Devices 54, 677 (2007) CrossRefGoogle Scholar
  8. 8.
    Grassi, R., Poli, S., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Tight-binding and effective mass modeling of armchair graphene nanoribbon FETs. Solid-State Electron. 53, 462 (2009) CrossRefGoogle Scholar
  9. 9.
    Yoon, Y., Fiori, G., Hong, S., Iannaccone, G., Guo, J.: Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. IEEE Trans. Electron Devices 55, 2314 (2008) CrossRefGoogle Scholar
  10. 10.
    Son, Y., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006) CrossRefGoogle Scholar
  11. 11.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845 (1997) CrossRefGoogle Scholar
  13. 13.
    Boykin, T.B.: Generalized eigenproblem method for surface and interface states: The complex bands of GaAs and AlAs. Phys. Rev. B 54, 8107 (1996) CrossRefGoogle Scholar
  14. 14.
    Lin, Y.-M., Appenzeller, J., Knoch, J., Avouris, Ph.: High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 40, 481 (2005) CrossRefGoogle Scholar
  15. 15.
    Appenzeller, J., Lin, Y.-M., Knoch, J., Chen, Z., Avouris, P.: Comparing carbon nanotube transistors—The ideal choice: A novel tunneling device design. IEEE Trans. Electron Devices 52, 2568 (2005) CrossRefGoogle Scholar
  16. 16.
    Zaho, P., Chauhan, J., Guo, J.: Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett. 9, 684 (2009) CrossRefGoogle Scholar
  17. 17.
    Yoon, Y., Guo, J.: Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 91, 073103 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Authors and Affiliations

  • R. Grassi
    • 1
  • A. Gnudi
    • 1
  • E. Gnani
    • 1
  • S. Reggiani
    • 1
  • G. Baccarani
    • 1
  1. 1.ARCES—Advanced Research Center for Electronics Systems, DEIS—Department of ElectronicsUniversity of BolognaBolognaItaly

Personalised recommendations