Global modeling of carrier-field dynamics in semiconductors using EMC–FDTD

  • K. J. Willis
  • J. S. Ayubi-Moak
  • S. C. Hagness
  • I. Knezevic
Article

Abstract

The interactions between carriers and fields in semiconductors at low frequencies (<100 GHz) can be adequately described by numerical solution of the Boltzmann transport equation coupled with Poisson’s equation. As the frequency approaches the THz regime, the quasi-static approximation fails and full-wave dynamics must be considered. Here, we review recent advances in global modeling techniques—numerical techniques that couple carrier dynamics with full wave dynamics. We focus on the coupling between the stochastic ensemble Monte Carlo (EMC) simulation of carrier transport and the finite-difference time-domain (FDTD) solution to Maxwell’s curl equations. We discuss the stability and accuracy requirements for different types of high-frequency excitation (wave illumination vs. ac bias), and present simulation results for the THz-regime conductivity of doped bulk silicon, ultrafast carrier dynamics and radiation patterns in GaAs filaments, and the ac response of GaAs MESFETs.

Keywords

Global modeling THz conductivity Microwave devices EMC-FDTD Monte Carlo simulation 

References

  1. 1.
    Tomizawa, K.: Numerical Simulation of Submicron Semiconductor Devices. Artech House, Norwood (1993) Google Scholar
  2. 2.
    Lundstrom, M.: Fundamentals of Carrier Transport, 2nd edn. Cambridge University Press, Cambridge (2000) Google Scholar
  3. 3.
    Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, New York (1989) Google Scholar
  4. 4.
    Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. Adam Hilger, Bristol (1988) MATHCrossRefGoogle Scholar
  5. 5.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Norwood (2005) Google Scholar
  6. 6.
    Alsunaidi, M.A., Imtiaz, S.M., El-Ghazaly, S.: IEEE Trans. Microw. Theory Tech. 44, 799 (1996) CrossRefGoogle Scholar
  7. 7.
    Grondin, R.O., El-Ghazaly, S., Goodnick, S.M.: IEEE Trans. Microw. Theory Tech. 47, 817 (1999) CrossRefGoogle Scholar
  8. 8.
    Langdon, A.B., Dawson, J.M.: Investigations of a sheet model for a bounded plasma with magnetic field and radiation. In: Symposium on Computer Simulation of Plasma and Many-Body Problems, College of William and Mary, Virginia, USA, April 19–21, 1967, p. 39. Scientific and Technical Information Division of the Office of Technology Utilization, NASA, Washington (1967) Google Scholar
  9. 9.
    Buneman, O.: Relativistic Plasmas. Coral Gables, Florida (1968) Google Scholar
  10. 10.
    Yee, K.S.: IEEE Trans. Antennas Propag. AP-14, 302 (1966) Google Scholar
  11. 11.
    Burn, R.D.: J. Plasma Phys. 12, 331 (1970) CrossRefGoogle Scholar
  12. 12.
    Sinz, K.H.: In: Fourth Conference on Numerical Simulation of Plasmas, Washington, D.C., 1970 Google Scholar
  13. 13.
    Haber, I., Wagner, C.E., Boris, J.P., Dawson, J.M.: In: Fourth Conference on Numerical Simulation of Plasmas, Washington, D.C., 1970 Google Scholar
  14. 14.
    Boris, J.P.: In: Fourth Conference on Numerical Simulation of Plasmas, Washington, D.C., 1970 Google Scholar
  15. 15.
    Boris, J.P., Lee, R.: J. Comput. Phys. 12, 131 (1973) CrossRefGoogle Scholar
  16. 16.
    Godfrey, B.B.: J. Comput. Phys. 15, 504 (1974) CrossRefGoogle Scholar
  17. 17.
    Godfrey, B.B., Langdon, A.B.: J. Comput. Phys. 20, 251 (1976) CrossRefGoogle Scholar
  18. 18.
    Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. Adam Hilger, Bristol (1991) CrossRefGoogle Scholar
  19. 19.
    Langdon, A.B., Lasinski, B.F.: Meth. Comput. Phys. 16, 327 (1976) Google Scholar
  20. 20.
    Dawson, J.M.: Rev. Mod. Phys. 55, 403 (1983) CrossRefGoogle Scholar
  21. 21.
    Morse, R.L., Nielson, C.W.: Phys. Fluids 14, 830 (1971) CrossRefGoogle Scholar
  22. 22.
    Langdon, A.B.: Phys. Fluids 15, 1149 (1972) CrossRefGoogle Scholar
  23. 23.
    Buneman, O., Barnes, C.W., Green, J.C., Nielsen, D.E.: J. Comput. Phys. 38, 1 (1980) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Taflove, A.: Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood (1998) MATHGoogle Scholar
  25. 25.
    Jacoboni, C., Reggiani, L.: Rev. Mod. Phys. 55, 645 (1983) CrossRefGoogle Scholar
  26. 26.
    Blotekjaer, K.: IEEE Trans. Electron Devices 17, 38 (1970) CrossRefGoogle Scholar
  27. 27.
    Shur, M.: Electron. Lett. 12, 615 (1976) CrossRefGoogle Scholar
  28. 28.
    Carnez, B., Cappy, A., Kaszynski, A., Constant, E., Salmer, G.: J. Appl. Phys. 51, 784 (1980) CrossRefGoogle Scholar
  29. 29.
    Feng, Y.K., Hintz, A.: IEEE Trans. Electron Devices 35, 1419 (1988) CrossRefGoogle Scholar
  30. 30.
    Goasguen, S., Tomeh, M.M., El-Ghazaly, S.: IEEE Trans. Microw. Theory Tech. 49, 2258 (2001) CrossRefGoogle Scholar
  31. 31.
    Goasguen, S., El-Ghazaly, S.: IEEE Microw. Guided Wave Lett. 10, 273 (2000) CrossRefGoogle Scholar
  32. 32.
    Hussein, Y.A., El-Ghazaly, S.: IEEE Trans. Microw. Theory Tech. 51, 1842 (2003) CrossRefGoogle Scholar
  33. 33.
    Hussein, Y.A., El-Ghazaly, S., Goodnick, S.M.: IEEE Trans. Microw. Theory Tech. 51, 2234 (2003) Google Scholar
  34. 34.
    Hussein, Y.A., El-Ghazaly, S.: IEEE Trans. Microw. Theory Tech. 52, 329 (2004) CrossRefGoogle Scholar
  35. 35.
    Movahhedi, M., Abdipour, A.: IEEE Trans. Microw. Theory Tech. 54, 2636 (2006) CrossRefGoogle Scholar
  36. 36.
    El-Ghazaly, S., Joshi, R.P., Grondin, R.O.: IEEE Trans. Microw. Theory Tech. 36, 629 (1990) CrossRefGoogle Scholar
  37. 37.
    Ayubi-Moak, J.S., Goodnick, S.M., Aboud, S.J., Saraniti, M., El-Ghazaly, S.: J. Comput. Electron. 2, 183 (2003) CrossRefGoogle Scholar
  38. 38.
    Ayubi-Moak, J.S., Goodnick, S.M., Saraniti, M.: J. Comput. Electron 5, 415 (2006) CrossRefGoogle Scholar
  39. 39.
    Ayubi-Moak, J.S., Ferry, D.K., Goodnick, S.M., Akis, R., Saraniti, M.: IEEE Trans. Electron Devices 54, 2327 (2007) CrossRefGoogle Scholar
  40. 40.
    Ayubi-Moak, J.S., Goodnick, S.M., Ferry, D.K., Akis, R., Saraniti, M., Faralli, N.: Physica Status Solidi (c) 5, 135 (2008) CrossRefGoogle Scholar
  41. 41.
    Ayubi-Moak, J.S., Goodnick, S.M., Ferry, D.K., Akis, R., Saraniti, M., Faralli, N.: J. Comput. Electron. 7, 187 (2008) CrossRefGoogle Scholar
  42. 42.
    Willis, K.J., Hagness, S.C., Knezevic, I.: In: 13th International Workshop on Computational Electronics (IWCE 2009), Beijing, 2009. http://dx.doi.org/10.1109/IWCE.2009.5091080
  43. 43.
    Willis, K.J., Hagness, S.C., Knezevic, I.: Appl. Phys. Lett. (2009, in preparation) Google Scholar
  44. 44.
    Hess, K.: Monte Carlo Device Simulation: Full Band and Beyond. Kluwer Academic Publishers, Dordrecht (1991) MATHGoogle Scholar
  45. 45.
    Fischetti, M.V., Laux, S.: Phys. Rev. B 38, 9721 (1988) CrossRefGoogle Scholar
  46. 46.
    Langdon, A.B.: J. Comput. Phys. 6, 247 (1970) CrossRefGoogle Scholar
  47. 47.
    Shichijo, H., Hess, K.: Phys. Rev. B 23, 4197 (1981) CrossRefGoogle Scholar
  48. 48.
    Tang, J.Y., Hess, K.: J. Appl. Phys. 54, 5139 (1983) CrossRefGoogle Scholar
  49. 49.
    Fischetti, M.V., Dimaria, D.J., Brorson, S.D., Theis, T.N., Kirtley, J.: Phys. Rev. B 31, 8124 (1985) CrossRefGoogle Scholar
  50. 50.
    Kometer, K., Zandler, G., Vogl, P.: Phys. Rev. B 46, 1382 (1992) CrossRefGoogle Scholar
  51. 51.
    Saraniti, M., Goodnick, S.M.: IEEE Trans. Electron Devices 47, 1909 (2000) CrossRefGoogle Scholar
  52. 52.
    Balanis, C.A.: Advances Engineering Electromagnetics, Chap. 7.8, pp. 329–332. Wiley, New York (1989) Google Scholar
  53. 53.
    Schneider, J.B.: IEEE Trans. Antennas Propag. 52, 3280 (2004) CrossRefGoogle Scholar
  54. 54.
    Schneider, J.B., Abdijalilov, K.: IEEE Trans. Antennas Propag. 54, 2531 (2006) CrossRefGoogle Scholar
  55. 55.
    Abdijalilov, K., Schneider, J.B.: IEEE Antennas Wirel. Propag. Lett. 5, 454 (2006) CrossRefGoogle Scholar
  56. 56.
    Berenger, J.P.: IEEE Trans. Antennas Propag. 44, 110 (1996) CrossRefGoogle Scholar
  57. 57.
    Berenger, J.P.: J. Comput. Phys. 127, 363 (1996) MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Roden, J.A., Gedney, S.D.: Microw. Opt. Technol. Lett. 27, 334 (2000) CrossRefGoogle Scholar
  59. 59.
    Courant, R., Friedrichs, K., Levy, H.: IBM J. Res. Dev. (1967) Google Scholar
  60. 60.
    Namiki, T.: IEEE Trans. Microw. Theory Tech. 47, 2003 (1999) CrossRefGoogle Scholar
  61. 61.
    Namiki, T.: IEEE Trans. Microw. Theory Tech. 48, 1950 (2000) CrossRefGoogle Scholar
  62. 62.
    Zhen, F., Chen, Z., Zhang, J.: IEEE Trans. Antennas Propag. 48, 1550 (2000) Google Scholar
  63. 63.
    Zheng, F., Chen, Z.: IEEE Trans. Antennas Propag. 49, 1006 (2001) CrossRefMathSciNetGoogle Scholar
  64. 64.
    Laux, S.E.: IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 15, 1266 (1996) CrossRefGoogle Scholar
  65. 65.
    Birdsall, C.K., Fuss, D.: J. Comput. Phys. 3, 494 (1969) CrossRefGoogle Scholar
  66. 66.
    Eastwood, J.W.: J. Comput. Phys. 18, 1 (1975) CrossRefMathSciNetGoogle Scholar
  67. 67.
    Marder, B.: J. Comput. Phys. 68, 48 (1987) MATHCrossRefGoogle Scholar
  68. 68.
    Villasenor, J., Buneman, O.: Comput. Phys. Commun. 69, 306 (1992) CrossRefGoogle Scholar
  69. 69.
    Esirkepov, T.Z.: Comput. Phys. Commun. 135, 144 (2001) MATHCrossRefGoogle Scholar
  70. 70.
    Barthelmé, R., Parzani, C.: Numerical Methods for Hyperbolic and Kinetic Problems, pp. 7–28. European Mathematical Society, Marseille (2005) Google Scholar
  71. 71.
    Hockney, R.W.: Phys. Fluids 9, 1826 (1966) CrossRefGoogle Scholar
  72. 72.
    van Exter, M., Grischkowsky, D.: Phys. Rev. B 41, 12140 (1990) CrossRefGoogle Scholar
  73. 73.
    Grischkowsky, D., Keiding, S., van Exter, M., Fattinger, C.: J. Opt. Soc. Am. B-Opt. Phys. 7, 2006 (1990) CrossRefGoogle Scholar
  74. 74.
    Nashima, S., Morikawa, O., Takata, K., Hangyo, M.: J. Appl. Phys. 90, 837 (2001) CrossRefGoogle Scholar
  75. 75.
    Hangyo, M., Tani, M., Nagashima, T.: Int. J. Infrared Millim. Waves F 26, 1661 (2005) CrossRefGoogle Scholar
  76. 76.
    Herrmann, M., Tani, M., Sakai, K., Fukasawa, R.: J. Appl. Phys. 91, 1247 (2002) CrossRefGoogle Scholar
  77. 77.
    van Exter, M., Grischkowsky, D.: Appl. Phys. Lett. 56, 1694 (1990) CrossRefGoogle Scholar
  78. 78.
    Jeon, T.I., Grischkowsky, D.: Phys. Rev. Lett. 78, 1106 (1997) CrossRefGoogle Scholar
  79. 79.
    Jeon, T.I., Grischkowsky, D.: Appl. Phys. Lett. 72, 3032 (1998) CrossRefGoogle Scholar
  80. 80.
    Nashima, S., Morikawa, O., Takata, K., Hangyo, M.: Appl. Phys. Lett. 79, 3923 (2001) CrossRefGoogle Scholar
  81. 81.
    Morikawa, O., Tonouchi, M., Hangyo, M.: Appl. Phys. Lett. 76, 1519 (2000) CrossRefGoogle Scholar
  82. 82.
    Morikawa, O., Tonouchi, M., Hangyo, M.: Appl. Phys. Lett. 75, 3772 (1999) CrossRefGoogle Scholar
  83. 83.
    Mendis, R.: Electron. Lett. 42, 19 (2006) CrossRefGoogle Scholar
  84. 84.
    Nagashima, T., Hangyo, M.: Appl. Phys. Lett. 79, 3917 (2001) CrossRefGoogle Scholar
  85. 85.
    Howells, S.C., Schlie, L.A.: Appl. Phys. Lett. 69, 550 (1996) CrossRefGoogle Scholar
  86. 86.
    Hull, R.: Properties of Crystalline Silicon. IET, Stevenage (1999) Google Scholar
  87. 87.
    Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M.C., Knox, W.H.: Phys. Rev. B 61, 16642 (2000) CrossRefGoogle Scholar
  88. 88.
    Wigger, S., Saraniti, M., Goodnick, S.M., Leitenstorfer, A.: J. Comput. Electron. 1, 475 (2002) CrossRefGoogle Scholar
  89. 89.
    Imtiaz, S.M., El-Ghazaly, S.: IEEE Trans. Microw. Theory Tech. 46, 923 (1998) CrossRefGoogle Scholar
  90. 90.
    Imtiaz, S.M., El-Ghazaly, S.: IEEE Trans. Microw. Theory Tech. 45, 2208 (1997) CrossRefGoogle Scholar
  91. 91.
    Imtiaz, S.M.S.: Ph.D. thesis, Arizona State University (1999) Google Scholar
  92. 92.
    Hammadi, S.M., El-Ghazaly, S.: IEEE Trans. Microw. Theory Tech. 47, 890 (1999) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Authors and Affiliations

  • K. J. Willis
    • 1
  • J. S. Ayubi-Moak
    • 2
  • S. C. Hagness
    • 1
  • I. Knezevic
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of Wisconsin–MadisonMadisonUSA
  2. 2.Department of Electronics and Electrical EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations