Advertisement

Comprehensive modeling of optoelectronic nanostructures

  • Bernd WitzigmannEmail author
  • Ratko G. Veprek
  • Sebastian Steiger
  • Jan Kupec
Article

Abstract

This paper gives an overview of physics-based modeling of optoelectronic nanostructures, driven by diverse applications such as photovoltaics, solid-state lighting, communications and sensing. Despite this broad field of applications, some common challenges can be identified: accurate modeling of light-matter interaction, semi-coherent carrier transport in the presence of strong recombination, calculation of material properties and electromagnetic characteristics. In this contribution, the general purpose simulation framework tdkp/AQUA/LUMI is presented, with the focus on non-planar nanowire devices.

Keywords

Optoelectronics Simulation Light emitting diodes Photovoltaics 

References

  1. 1.
    Alferov, Z.: Double heterostructure lasers: early days and future perspectives. IEEE J. Sel. Top. Quantum Electron. 6(6), 832–840 (2005) Google Scholar
  2. 2.
    Weisbuch, C., Benisty, H., Houdre, R.: Overview of fundamentals and applications of electrons, excitons and photons in confined structures. J. Lumin. 85, 271–293 (2000) CrossRefGoogle Scholar
  3. 3.
    Christopoulos, S., Baldassarri Höger von Högersthal, G., Grundy, A.J.D., Lagoudakis, P.G., Kavokin, A.V., Baumberg, J.J., Christmann, G., Butté, R., Feltin, E., Carlin, J.-F., Grandjean, N.: Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405–126409 (2007) CrossRefGoogle Scholar
  4. 4.
    Boykin, T.B., Kharche, N., Klimeck, G., Korkusinski, M.: Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations. J. Phys.: Condens. Matter. 19, 036203–036217 (2007) CrossRefGoogle Scholar
  5. 5.
    Rinke, P., Scheffler, M., Qteish, A., Winkelnkemper, M., Bimberg, D., Neugebauer, J.: Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory. Appl. Phys. Lett. 89(16), 161919–161921 (2006) CrossRefGoogle Scholar
  6. 6.
    Veprek, R.G., Steiger, S., Witzigmann, B.: Ellipticity and the spurious solution problem of kp envelope equations. Phys. Rev. B 76, 165320–165328 (2007) CrossRefGoogle Scholar
  7. 7.
    Foreman, B.A.: Valence-band mixing in first-principles envelope-function theory. Phys. Rev. B 76, 045327–045338 (2007) CrossRefGoogle Scholar
  8. 8.
    Foreman, B.A.: First-principles envelope-function theory for lattice-matched semiconductor heterostructures. Phys. Rev. B 72, 165345–165354 (2005) CrossRefGoogle Scholar
  9. 9.
    Veprek, R.G., Steiger, S., Witzigmann, B.: Operator ordering ellipticity and spurious solutions in kp calculations of III-nitride nanostructures. Opt. Quantum Electron. (2009, to appear) Google Scholar
  10. 10.
    Chow, W.W., Koch, S.W.: Semiconductor-Laser Fundamentals. Springer, Berlin (1999) zbMATHGoogle Scholar
  11. 11.
    Witzigmann, B., Tomamichel, M., Steiger, S., Veprek, R.G., Kojima, K., Schwarz, U.T.: Analysis of gain and luminescence in violet and blue GaInN/GaN quantum-wells. IEEE J. Quantum Electron. 44(2), 144–149 (2008) CrossRefGoogle Scholar
  12. 12.
    Chow, W.W., Girndt, A., Koch, S.W.: Calculation of quantum well laser gain spectra. Opt. Express 2, 119–124 (1998) CrossRefGoogle Scholar
  13. 13.
    Chichibu, S.F.: Origin of defect-sensitive emission probability in In-containing (Al, In, Ga)N alloy semiconductors. Nat. Mater. 5, 810–816 (2006) CrossRefGoogle Scholar
  14. 14.
    Potin, V., Rosenauer, A., Gerthsen, D., Kuhn, B., Scholz, F.: Comparison of the morphology and In distribution of capped and uncapped InGaN layers by transmission electron microscopy. Phys. Status Solidi (B) 234, 947–951 (2002) CrossRefGoogle Scholar
  15. 15.
    Grupen, M., Hess, K.: Simulation of carrier transport and nonlinearities in quantum-well laser diodes. IEEE J. Quantum Electron. 34(120), 1998 Google Scholar
  16. 16.
    Steiger, S., Veprek, R.G., Witzigmann, B.: Unified simulation of transport and luminescence in optoelectronic nanostructures. J. Comput. Electron. 7, 509–520 (2008) CrossRefGoogle Scholar
  17. 17.
    Witzigmann, B., Hybertsen, M.S., Reynolds, C.L., Belenky, G.L., Shterengas, L., Shtengel, G.E.: Microscopic simulation of the temperature dependence of static and dynamic 1.3 m multi-quantum-well laser performance. IEEE J. Quantum Electron. 39(1), 120–128 (2003) CrossRefGoogle Scholar
  18. 18.
    Loeser, M., Witzigmann, B.: Multi-dimensional electro-opto-thermal modeling of broadband optical devices. IEEE J. Quantum Electron. 44(6), 505–514 (2008) CrossRefGoogle Scholar
  19. 19.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995) Google Scholar
  20. 20.
    Haug, H., Jauho, A.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1996) Google Scholar
  21. 21.
    Steiger, S., Veprek, R.G., Witzigmann, B.: Electroluminescence from a quantum-well LED using NEGF. In: Proc. IWCE (2009) Google Scholar
  22. 22.
    Kishino, K., Kikuchi, A., Sekiguchi, H., Ishizawa, S.: In-gan/gan nanocolumn leds emitting from blue to red. Proc. SPIE 6473, 1–11 (2007) Google Scholar
  23. 23.
    Veprek, R.G., Steiger, S., Witzigmann, B.: GaN-based nanocolumn LEDs: impact of strain engineering on the electro-optical performance. Phys. Status Solidi C 6(2), 506–509 (2009) CrossRefGoogle Scholar
  24. 24.
    Rivera, C., Jahn, U., Flissikowski, T., Pau, J.L., Muñoz, E., Grahn, H.T.: Strain-confinement mechanism in mesoscopic quantum disks based on piezoelectric materials. Phys. Rev. B 75, 046316-1–10 (2007) CrossRefGoogle Scholar
  25. 25.
    Tsakalakos, L.: Nanostructures for photovoltaics. Mater. Sci. Eng. 62(6), 175–189 (2008) CrossRefGoogle Scholar
  26. 26.
    Kupec, J., Witzigmann, B.: Dispersion, wave propagation and efficiency analysis of nanowire solar cells. Opt. Express 17(12), 10399–10410 (2009) CrossRefGoogle Scholar
  27. 27.
    Shockley, W., Queisser, H.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–515 (1961) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Authors and Affiliations

  • Bernd Witzigmann
    • 1
    Email author
  • Ratko G. Veprek
    • 2
  • Sebastian Steiger
    • 2
  • Jan Kupec
    • 2
  1. 1.Computational Electronics and Photonics GroupUniversity of KasselKasselGermany
  2. 2.Integrated Systems LaboratoryETH ZürichZürichSwitzerland

Personalised recommendations