Journal of Computational Electronics

, Volume 8, Issue 1, pp 35–42 | Cite as

Architecture for an external input into a molecular QCA circuit

Article

Abstract

A simple architecture for data input into a molecular quantum-dot cellular automata (QCA) circuit from an external CMOS circuit is proposed. A “T”-shaped interconnect, utilizing fixed-polarization cells to provide the desired polarization, is controlled via external electrodes connected to a standard CMOS input driver. The applied input signal is used to gate either the propagation of a fixed polarization, P=+1, or that of the complementary fixed polarization, P=−1, into the QCA circuit. The architecture utilizes the field-driven clocking scheme proposed in recent literature to achieve transduction between applied input voltage and a molecular configuration. The system is modelled using the coherence vector formalism with a three-state basis and simulated using the QCADesigner simulation tool.

Keywords

Quantum dot cellular automata QCA I/O Molecular computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lieberman, M., Chellamma, S., Varughese, B., Wang, Y.L., Lent, C., Bernstein, G.H., Snider, G., Peiris, F.C.: Quantum-dot cellular automata at a molecular scale. Mol. Electron. 960, 225–239 (2002) Google Scholar
  2. 2.
    Lent, C.S.: Molecular electronics—bypassing the transistor paradigm. Science 288(5471), 1598–1599 (2000) CrossRefGoogle Scholar
  3. 3.
    Lent, C.S.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993) CrossRefGoogle Scholar
  4. 4.
    Lu, Y.H., Lent, C.S.: A metric for characterizing the bistability of molecular quantum-dot cellular automata. Nanotechnology 19(15) (2008) Google Scholar
  5. 5.
    Lu, Y., Liu, M., Lent, C.: Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics. J. Appl. Phys. 102(3), 034311–7 (2007) CrossRefGoogle Scholar
  6. 6.
    Yuhui, L., Mo, L., Lent, C.: Molecular electronics—from structure to circuit dynamics. In: 6th IEEE Conference on Nanotechnology, vol. 1, pp. 62–65 (2006) Google Scholar
  7. 7.
    Yuhui, L., Lent, C.S.: Theoretical study of molecular quantum dot cellular automata. In: 10th International Workshop on Computational Electronics, pp. 118–119 (2004) Google Scholar
  8. 8.
    Hu, W.C., Sarveswaran, K., Lieberman, M., Bernstein, G.H.: High-resolution electron beam lithography and DNA nano-patterning for molecular qca. IEEE Trans. Nanotechnol. 4(3), 312–316 (2005) CrossRefGoogle Scholar
  9. 9.
    Qi, H., : Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125(49), 15250–15259 (2003) CrossRefGoogle Scholar
  10. 10.
    Walus, K., Jullien, G.A.: Design tools for an emerging soc technology: Quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006) CrossRefGoogle Scholar
  11. 11.
    Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19(5), 1752–1755 (2001) CrossRefGoogle Scholar
  12. 12.
    Blair, E.P., Lent, C.S.: An architecture for molecular computing using quantum-dot cellular automata. In: 3rd IEEE Conference on Nanotechnology, vol. 1, pp. 402–405 (2003) Google Scholar
  13. 13.
    Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003) CrossRefGoogle Scholar
  14. 14.
    Walus, K., Schulhof, G., Jullien, G.A.: Implementation of a simulation engine for clocked molecular qca. In: Canadian Conference on Electrical and Computer Engineering, pp. 2128–2131 (2006) Google Scholar
  15. 15.
    Timler, J., Lent, C.S.: Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94(2), 1050–1060 (2003) CrossRefGoogle Scholar
  16. 16.
    Lent, C.S., Liu, M., Lu, Y.H.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006) CrossRefGoogle Scholar
  17. 17.
    Mahler, G., Weberrüs, V.A.: Quantum Networks: Dynamics of Open Nanostructures. Springer, Berlin (1998) Google Scholar
  18. 18.
    Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: Qcadesigner: A rapid design and simulation tool for quantum-dot cellular automata. Nanotechnol., IEEE Trans. 3(1), 26–31 (2004) CrossRefGoogle Scholar
  19. 19.
    Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002) CrossRefGoogle Scholar
  20. 20.
    Tamura, H., Kibune, M., Yamaguchi, H., Kanda, K., Gotoh, K., Ishida, H., Ogawa, J.: Circuits for CMOS high-speed i/o in sub-100 nm technologies. IEICE Trans. Electron. E 89(3), 300–311 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations