Journal of Computational Electronics

, Volume 7, Issue 4, pp 521–529 | Cite as

Reliable kp band structure calculation for nanostructures using finite elements

  • Ratko G. VeprekEmail author
  • Sebastian Steiger
  • Bernd Witzigmann


The kp envelope function method is a popular tool for the study of electronic properties of III–V nanostructures. The equations are usually transferred to real-space and solved using standard numerical techniques. The powerful and flexible finite element method was seldom employed due to problems with spurious solutions. The method would be favorable for the calculation of electronic properties of large strained nanostructures as it allows a flexible representation of complex geometries. In this paper, we show our consistent implementation of the kp envelope equations for nanostructures of any dimensionality. By including Burt-Foreman operator ordering and ensuring the ellipticity of the equations, we are able to calculate reliable and spurious solution free subband structures for the standard kp 4×4, 6×6 and 8×8 models for zinc-blende and wurtzite crystals. We further show how to consistently include strain effects up to second order by means of the Pikus-Bir transformation. Finally, we analyze the performance of our implementation using benchmark examples.


Nanostructures kp Strain Finite elements Bandstructure Spurious solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foreman, B.A.: First-principles envelope-function theory for lattice-matched semiconductor heterostructures. Phys. Rev. B 72, 165,345 (2005) Google Scholar
  2. 2.
    Foreman, B.A.: Valence-band mixing in first-principles envelope-function theory. Phys. Rev. B 76, 045,327 (2007) Google Scholar
  3. 3.
    Wang, L.W., Williamson, A.J., Zunger, A., Jiang, H., Singh, J.: Comparison of the kp and direct diagonalization approaches to the electronic structure of inas/gaas quantum dots. Appl. Phys. Lett. 76, 339 (2000) CrossRefGoogle Scholar
  4. 4.
    Wood, D.M., Zunger, A.: Successes and failures of the kp method: A direct assessment for gaas/alas quantum structures. Phys. Rev. B 53, 7949 (1996) CrossRefGoogle Scholar
  5. 5.
    Fu, H., Wang, L.W., Zunger, A.: Applicability of the kp method to the electronic structure of quantum dots. Phys. Rev. B 57, 9971 (1998) CrossRefGoogle Scholar
  6. 6.
    Zunger, A.: On the farsightedness (hyperopia) of the standard kp model. Phys. Stat. Sol. (A) 190, 467 (2002) CrossRefGoogle Scholar
  7. 7.
    Veprek, R.G., Steiger, S., Witzigmann, B.: Ellipticity and the spurious solution problem of kp envelope equations. Phys. Rev. B 76, 165,320 (2007) CrossRefGoogle Scholar
  8. 8.
    Burt, M.G.: The justification for applying the effective-mass approximation to microstructures. J. Phys.: Condens. Matter 4, 6651–6690 (1992) CrossRefGoogle Scholar
  9. 9.
    Burt, M.G.: Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures. J. Phys.: Condens. Matter 11, R53–R83 (1999) CrossRefGoogle Scholar
  10. 10.
    Foreman, B.A.: Elimination of spurious solutions from eight-band kp theory. Phys. Rev. B 56, R12,748 (1997) CrossRefGoogle Scholar
  11. 11.
    Trellakis, A., Zibold, T., Andlauer, T., Briner, S., Smith, R.K., Morschl, R., Vogl, P.: The 3d nanometer device project nextnano: Concepts, methods, results. J. Comput. Electron 5, 285–289 (2006) CrossRefGoogle Scholar
  12. 12.
    Pryor, C., Pistol, M.E., Samuelson, L.: Electronic structure of strained inp/Ga0.51In0.49P quantum dots. Phys. Rev. B 56, 10,404 (1997) CrossRefGoogle Scholar
  13. 13.
    Pryor, C.: Eight-band calculations of strained inas/gaas quantum dots compared with one-, four-, and six-band approximations. Phys. Rev. B 57, 7190 (1998) CrossRefGoogle Scholar
  14. 14.
    Pryor, C.: Geometry and material parameter dependence of inas/gaas quantum dot electronic structure. Phys. Rev. B 60, 2869 (1999) CrossRefGoogle Scholar
  15. 15.
    Holm, M., Pistol, M.E., Pryor, C.: Calculations of the electronic structure of strained inas quantum dots in inp. J. Appl. Phys. 92, 932 (2002) CrossRefGoogle Scholar
  16. 16.
    Schuurmans, M.F.H., t’Hooft, G.W.: Simple calculations of confinemenet states in a quantum well. Phys. Rev. B. 31, 8041 (1985) CrossRefGoogle Scholar
  17. 17.
    Stier, O., Bimberg, D.: Modeling of strained quantum wires using eight-band kp theory. Phys. Rev. B 55, 7726 (1997) CrossRefGoogle Scholar
  18. 18.
    Stier, O., Grundmann, M., Bimberg, D.: Electronic and optical properties of strained quantum dots modeled by 8-band kp theory. Phys. Rev. B 59, 5688 (1999) CrossRefGoogle Scholar
  19. 19.
    Chuang, S.L., Physics of Optoelectronic Devices. Wiley, New York (1995) Google Scholar
  20. 20.
    Pidgeon, C.R., Brown, R.N.: Interband magneto-absorption and Faraday rotation in insb. Phys. Rev. 146, 146 (1966) CrossRefGoogle Scholar
  21. 21.
    Enders, P., Barwolff, A., Woerner, M., Suisky, D.: kp theory of energy bands, wave functions, and optical selection rules in strained tetrahedral semiconductors. Phys. Rev. B 51, 16,695 (1995) CrossRefGoogle Scholar
  22. 22.
    Lassen, B., Voon, L.C.L.Y., Willatzen, M., Melnik, R.: Exact envelope-function theory versus symmetrized hamiltonian for quantum wires: a comparison. Solid State Commun. 132, 141 (2004) CrossRefGoogle Scholar
  23. 23.
    Chuang, S.L., Chang, C.S.: kp method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491 (1996) CrossRefGoogle Scholar
  24. 24.
    Hader, J., Moloney, J.V., Thranhardt, A., Koch, S.W.: Nitride Semiconductor Devices: Principles and Simulation, chap. Interband Transitions in InGaN Quantum Wells, pp. 145–167. USA, NUSOD Institute Newark (2007), DE 19714-7204 Google Scholar
  25. 25.
    Mireles, F., Ulloa, S.E.: Ordered hamiltonian and matching conditions for heterojunctions with wurtzite symmetry: Gan/AlxGa1−xN quantum wells. Phys. Rev. B 60, 13,659 (1999) CrossRefGoogle Scholar
  26. 26.
    Mireles, F., Ulloa, S.E.: Strain and crystallographic orientation effects on the valence subbands of wurtzite quantum wells. Phys. Rev. B. 62, 2562 (2000) CrossRefGoogle Scholar
  27. 27.
    Vurgaftman, I., Meyer, J.R.: Band parameters for nitrogen-containing semiconductors. Appl. Phys. Rev. 94, 3675 (2003) CrossRefGoogle Scholar
  28. 28.
    Braess, D.: Finite Elemente. Springer, Berlin (1997) zbMATHGoogle Scholar
  29. 29.
    Pryor, C., Kim, J., Wang, L.W., Williamson, A.J., Zunger, A.: Comparison of two methods for describing the strain profiles in quantum dots. J. Appl. Phys. 83, 2548 (1998) CrossRefGoogle Scholar
  30. 30.
    Bir, G.L., Pikus, G.E.: Symmetry and Strain-Induced Effects in Semiconductors. Wiley, New York (1974) Google Scholar
  31. 31.
    Bahder, T.B.: Eight-band kp model of strained zinc-blende crystals. Phys. Rev. B 41, 11,992 (1990) CrossRefGoogle Scholar
  32. 32.
    Ram-Mohan, L.R.: Finite Element and Boundary Element Applications in Quantum Mechanics. Oxford University Press, Oxford (2002) Google Scholar
  33. 33.
    Johnson, H.T., Freund, L.B.: The influence of strain on confined electronic states in semiconductor quantum structures. Int. J. Sol. Struct. 38, 1045 (2001) zbMATHCrossRefGoogle Scholar
  34. 34.
    Park, S.H., Ahn, D., Lee, Y.T.: Finite element analysis of valence band structures in quantum wires. J. Appl. Phys. 96, 2055 (2004) CrossRefGoogle Scholar
  35. 35.
    Schwab, C.: p- and hp- Finite Element Methods. Clarendon, Oxford (1998) zbMATHGoogle Scholar
  36. 36.
    Sorensen, D.C.: Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations. Tech. Rep. TR-96-40 (1996).
  37. 37.
    Sleijpen, G.L.G., Van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Analysis Appl. 17(2), 401–425 (1996). zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Lehoucq, R.B., Sorensen, D.C., Yang, C.: Arpack Users Quide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998) Google Scholar
  39. 39.
    Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with pardiso. J. Future Gener. Comput. Syst. 20, 475–487 (2004) CrossRefGoogle Scholar
  40. 40.
    Röllin, S.: Parallel iterative solvers in computational electronics. Ph.D. thesis, ETH Zürich (2004) Google Scholar
  41. 41.
    Vurgaftman, I., Meyer, J.R.: Band parameters for iii-v compound semiconductors and their alloys. Appl. Phys. Rev. 89, 5815 (2001) CrossRefGoogle Scholar
  42. 42.
    Steiger, S., Veprek, R.G., Witzigmann, B.: Unified simulation of transport and luminescence in optoelectronic nanostructures. J. Comput. Electron. (2008, this issue). doi: 10.1007/s10825-008-0261-z

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Ratko G. Veprek
    • 1
    Email author
  • Sebastian Steiger
    • 1
  • Bernd Witzigmann
    • 1
  1. 1.Integrated Systems Laboratory, Department of Information Technology and Electrical EngineeringETH ZurichZurichSwitzerland

Personalised recommendations