Journal of Computational Electronics

, Volume 7, Issue 3, pp 181–186 | Cite as

CMOS performance enhancement in Hybrid Orientation Technologies

  • Tapas Kumar MaitiEmail author
  • Satyasopan Mahato
  • Pinaki Chakraborty
  • Chinmay Kumar Maiti
  • Subir Kumar Sarkar


Possible MOSFET performance enhancement by combining the hybrid-orientation technology (HOT) and process-induced local strain engineering is predicted for sub-45-nm CMOS technology nodes via technology CAD (TCAD) simulation. Mobility enhancements are modeled for both the hybrid orientation and process-induced local strain in CMOS technologies and are used in simulation. RF performance is investigated in detail and peak cutoff frequency, f T of 524 GHz for n-MOSFETs and 239 GHz for p-MOSFETs are predicted from simulation.


Hybrid Orientation Technology Technology CAD Process-induced strain CMOS integrated circuits Mobility Strained-Si 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Semiconductor Industry Association: International Technology Roadmap for Semiconductors. San Jose, CA (2005). Also 2006 Update Google Scholar
  2. 2.
    Yang, M., et al.: IEEE Trans. Electron. Dev. 53, 965–978 (2006) CrossRefGoogle Scholar
  3. 3.
    Yang, M., et al.: On the integration of CMOS with hybrid crystal orientations. IEEE VLSI Tech. Digit. 160–161 (2004) Google Scholar
  4. 4.
    Egley, J.L., Chidambarrao, D.: Strain effects on device characteristics: Implementation in drift-diffusion simulators. Solid-State Electron. 36, 1653–1664 (1993) CrossRefGoogle Scholar
  5. 5.
    Bardeen, J., Shockley, W.: Deformation potentials and mobilities in non-planar crystals. Phys. Rev. 80, 72–80 (1950) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Goroff, I., Kleinman, L.: Deformation potentials in silicon. III. Effects of a general strain on conduction and valence levels. Phys. Rev. 132, 1080–1084 (1963) CrossRefGoogle Scholar
  7. 7.
    Pikus, G.E., Bir, G.L.: Symmetry and Strain Induced Effects in Semiconductors. Wiley, New York (1974) Google Scholar
  8. 8.
    Matsuda, K., Suzuki, K., Yamamura, K., Kanda, Y.: Nonlinear piezoresistance effects in silicon. J. Appl. Phys. 73, 1838–1847 (1993) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Tapas Kumar Maiti
    • 1
    Email author
  • Satyasopan Mahato
    • 1
  • Pinaki Chakraborty
    • 1
  • Chinmay Kumar Maiti
    • 1
  • Subir Kumar Sarkar
    • 2
  1. 1.Electronics and ECE DepartmentIIT KharagpurKharagpurIndia
  2. 2.ETCE DepartmentJadavpur UniversityKolkataIndia

Personalised recommendations