Journal of Computational Electronics

, Volume 7, Issue 3, pp 394–397 | Cite as

Computational study of double-gate graphene nano-ribbon transistors

  • Gengchiau LiangEmail author
  • Neophytos Neophytou
  • Mark S. Lundstrom
  • Dmitri E. Nikonov


The ballistic performance of graphene nanoribbon (GNR) MOSFETs with different width of armchair GNRs is examined using a real-space quantum simulator based on the Non-equilibrium Green’s Function (NEGF) approach, self-consistently coupled to a 3D Poisson’s equation for electrostatics. GNR MOSFETs show promising device performance, in terms of low subthreshold swing and small drain-induced-barrier-lowing due to their excellent electrostatics and gate control (single monolayer). However, the quantum tunneling effects play an import role in the GNR device performance degradation for wider width GNR MOSFETs due to their reduced bandgap. At 2.2 nm width, the OFF current performance is completely dominated by tunneling currents, making the OFF-state of the device difficult to control.


MOSFETs Graphene nanoribbon Transistors NEGF Quantum tunneling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Semiconductor Industry Association: International technology roadmap for semiconductors (2005). Available:
  2. 2.
    Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006) CrossRefGoogle Scholar
  3. 3.
    Lemme, M.C., Echtermeyer, T.J., Baus, M., Kurz, H.: A graphene field-effect device. IEEE Electron. Device Lett. 28(4), 282 (2007) CrossRefGoogle Scholar
  4. 4.
    Liang, G.C., Neophytou, N., Lundstrom, M.S., Nikonov, D.E.: Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans. Electron Devices 54(4), 677 (2007) CrossRefGoogle Scholar
  5. 5.
    Obradovic, B., Kotlyar, R., Heinz, F., Matagne, P., Rakshit, T., Giles, M.D., Stettler, M.A., Nikonov, D.E.: Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett. 88, 142102 (2006) CrossRefGoogle Scholar
  6. 6.
    Wakabayashi, K.: Electronic transport properties of nanographite ribbon junctions. Phys. Rev. B 64, 125428 (2001) CrossRefGoogle Scholar
  7. 7.
    Ouyang, Y., Yoon, Y., Fodor, J.K., Guo, J.: Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors. Appl. Phys. Lett. 89, 203107 (2006) CrossRefGoogle Scholar
  8. 8.
    Liang, G.C., Neophytou, N., Lundstrom, M.S., Nikonov, D.E.: Theoretical study of graphene nanoribbon field-effect transistors. In: Proceedings NSTI Nanotech 2007, pp. 127–130, Santa Clara, 20–24 May 2007 Google Scholar
  9. 9.
    Liang, G.C., Neophytou, N., Lundstrom, M.S., Nikonov, D.E.: Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: a full real-space quantum transport simulation. J. Appl. Phys. 102, 054307 (2007) CrossRefGoogle Scholar
  10. 10.
    Ramo, S., Whinnery, J., Van Duzer, T.: Fields and Waves in Communication in Electronics, 3rd edn. Willey, New York (1993) Google Scholar
  11. 11.
    Saito, R., Dresselhaus, G., Dresselhaus, M.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998) Google Scholar
  12. 12.
    Datta, S.: Quantum Transport: Atom to Transistor, 2nd edn. Cambridge University Press, Cambridge (2005) zbMATHGoogle Scholar
  13. 13.
    Hasan, S., Wang, J., Lundstrom, M.: Device design and manufacturing issues for 10 nm-scale MOSFETs: a computational study. Solid-State Electron. 48(6), 867–875 (2004) CrossRefGoogle Scholar
  14. 14.
    Fiori, G., Iannaccone, G.: Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28(8), 760–762 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Gengchiau Liang
    • 1
    Email author
  • Neophytos Neophytou
    • 2
  • Mark S. Lundstrom
    • 2
  • Dmitri E. Nikonov
    • 3
  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Technology and Manufacturing GroupIntel Corp., SC1-05Santa ClaraUSA

Personalised recommendations